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Problem Solutions for Chapter 11

11-1. (a) From Eq. (11-2), the pumping rate is

  

R p = I
qwdL

= 100  mA
(1.6 ×10−19  C)(5 µm)(0.5  µm)(200  µm)

= 1.25 ×1027  (electrons / cm 3) / s

(b) From Eq. (11-8), the maximum zero-signal gain is

  

g0 = 0.3(1×10 −20 m2 )(1 ns) 1.25 ×1033  (electrons/ m3) / s −
1.0 × 1024 /m3

1 ns
 
  

 
  

= 750  m−1 = 7.5  cm−1

(c) From Eq. (11-7), the saturation photon density is

  

N ph;sat =
1

0.3 (1×10−20m2 ) 2 ×108  m / s( )(1 ns)
= 1.67 ×1015  photons/ cm 3

(d) From Eq. (11-4), the photon density is

  

N ph =
Pin λ

vg  hc wd( )
= 1.32 × 1010  photons / cm3

11-2. Carrying out the integrals in Eq. (11-14) yields

g0L = ln
P(L)
P(0)

+
P(L) − P(0)

Pamp,sat

Then with P(0) = Pin, P(L) = Pout, G = Pout/Pin, and G0 = exp g0L( ) from Eq. (11-

10), we have

  

ln  G 0 = g0L = ln  G +
GPin

Pamp,sat

−
Pin

Pamp,sat

= ln  G + 1 − G( ) Pin

Pamp,sat

Rearranging terms in the leftmost and rightmost parts then yields Eq. (11-15).

11-3. Plots of amplifier gains.
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11-4. Let G = G0/2 and Pin = Pout / G = 2Pout,sat / G 0 . Then Eq. (11-15) yields

  

G0

2
= 1+

G0Pamp.sat

2Pout.sat

ln  2

Solving for Pout,sat and with G0 >> 1, we have

  

Pout .sat =
G 0 ln  2
G0 − 2( ) Pamp.sat ≈ (ln  2)  Pamp .sat = 0.693 Pamp.sat

11-5.  From Eq. (11-10), at half the amplifier gain we have

G =
1
2

G0 =
1
2

exp g0L( )= exp gL( )

Taking the logarithm and substituting into the equation given in the problem,

  

g = g0 −
1
L

ln  2 =
g0

1 + 4 ν3dB − ν0( )
2

/ ∆ν( )2

From this we can find that

  

2 ν3dB − ν0( )
∆ν

=
g0

g0 − 1
L

ln  2
−1

 

 

 
 

 

 

 
 

1/ 2

=
1

g0L / ln  2 −1

 

  
 

  

1/ 2

=
1

log2
G 0

2
 
 

 
 

 
  

 
  

1/ 2

11-6. Since

  
ln  G = g λ( )L = g0 exp  − λ − λ0( )2

/ 2 ∆λ( )2[ ]= ln  G0  exp  − λ − λ0( )2
/ 2 ∆λ( )2[ ]

we have

  

ln
ln  G 0

ln  G
 
 

 
 

=
λ − λ 0( )2

2 ∆λ( )2

The FWHM is given by 2(λ – λ0), so that from the above equation, with the 3-dB

gain G = 27 dB being 3 dB below the peak gain, we have
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FWHM = 2 λ − λ0 = 2  2  ln  
ln  G0

ln  G
 
 

 
 

 
  

 
  

1/ 2

∆λ

= 2  2 ln  
ln  30
ln  27

 
 

 
 

 
  

 
  

1/ 2

∆λ = 0.50 ∆λ

which is the expected result for a gaussian gain profile.

11-7. From Eq. (11-17), the maximum PCE is given by

PCE ≤
λp

λ s

=
980

1545
= 63.4%  for 980-nm pumping, and by

PCE ≤
λp

λ s

= 1475
1545

= 95.5%   for 1475-nm pumping

11-8. (a) 27 dBm = 501 mW and 2 dBm = 1.6 mW.

Thus the gain is

  
G = 10 log  

501
1.6

 
 

 
 = 10 log  313 = 25  dB

(b) From Eq. (11-19),

  

313 ≤ 1+ 980
1542

 
Pp,in

Ps, in

. With a 1.6-mW input signal, the pump power needed is

  
Pp,in ≥

312 1542( )
980

 1.6 mW( ) = 785 mW

11-9. (a) Noise terms:

From Eq. (6-17), the thermal noise term is

  

σT
2 =

4kBT
RL

B =
4  1.38 ×10−23  J / K( ) 293 K( )

1000 Ω
 1 GHz = 1.62 ×10−14  A2

From Eq. (11-26), we have
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σshot− s
2 = 2qR GPs, inB

= 2 1.6 ×10 −19  C( ) 0.73 A /W( ) 100( ) 1 µW( )1 GHz

= 2.34 ×10−14  A2

From Eqs. (11-26) and (11-24), we have

  

σshot− ASE
2 = 2qR SASE∆νoptB = 2qR

hc
λ

n spG∆νoptB

= 2 1.6 ×10−19  C( ) .73  A / W( ) 6.626 × 10−34  J/ K( )

× 3 ×108 m /s( )2(100)(3.77 THz)(1 GHz)/1550nm

= 2.26 ×10−14
 A2

From Eq. (11-27) and (11-24), we have

  

σs− ASE
2 = 4 0.73 A/ W( ) 100( ) 1 µW( )[ ]

× .73 A/ W( )
6.626 ×10−34  J/ K( ) 3 ×108 m /s( )

1550nm
2(100)(1 GHz)

 

 
 

 

 
 

= 5.47 ×10−12  A 2

From Eq. (11-28), we have

  

σASE − ASE
2 = .73A / W( )2 6.626 × 10−34  J/ K( )3 × 108 m/ s( )

1550nm
2(100)

 

  
 

  

2

× 2 1 THz( )− 1 GHz[ ]1 GHz( )

= 7.01×10−13  A 2
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11-10. Plot of penalty factor from Eq. (11-36).

11-11. (a) Using the transparency condition Gexp(-αL) = 1 for a fiber/amplifier segment,

we have

  

P path =
1
L

  P(z) dz
0

L

∫ =
Pin

L
  e− αz dz

0

L

∫

= Pin

αL
 1 − e−αL[ ]= Pin

αL
 1 − 1

G
 
 

 
 

= Pin

G
 

G −1
ln  G

 
 

 
 

since ln G = αL from the transparency condition.

(b) From Eq. (11-35) and using Eq. (11-24),

  

PASE path
= NPASE

L
  e− αz 

0

L

∫ dz = NPASE

αL
 1 − e−αL( )

=
α (NL)
(αL)2  PASE  1−

1
G

 
 

 
 =

αL tot

(ln  G)2  hνn sp(G −1)∆νopt  1 −
1
G

 
 

 
 

= αL tot hνnsp∆νopt  
1
G

G −1
ln  G

 
 

 
 

2

11-12. Since the slope of the gain-versus -input power curve is –0.5, then for a 6-dB drop

in the input signal, the gain increases by +3 dB.

1. Thus at the first amplifier, a –10.1-dBm signal now arrives and experiences a

+10.1-dB gain. This gives a 0-dBm output (versus a normal +3-dBm output).

2. At the second amplifier, the input is now –7.1 dBm (down 3 dB from the usual

–4.1 dBm level). Hence the gain is now 8.6 dB (up 1.5 dB), yielding an output

of

–7.1 dBm + (7.1 + 1.5) dB = 1.5 dBm
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3. At the third amplifier, the input is now –5.6 dBm (down 1.5 dB from the usual

–4.1 dBm level). Hence the gain is up 0.75 dB, yielding an output of

–5.6 dBm + (7.1 + 0.75) dB = 2.25 dBm

4. At the fourth amplifier, the input is now –4.85 dBm (down 0.75 dB from the

usual –4.1 dBm level). Hence the gain is up 0.375 dB, yielding an output of

–4.85 dBm + (7.1 + 0.375) dB = 2.63 dBm

which is within 0.37 dB of the normal +3 dBm level.

11-13. First let 2πνi t + φ i = θ i  for simplicity. Then write the cosine term as

  
cos  θi =

e jθ i + e− jθ i

2
, so that

  

P = E i(t)E i
*(t) = 2Pi

i =1

N

∑ e jθ i + e− jθi

2
 

  
 

  × 2Pk
k =1

N

∑ e jθk + e− jθk

2
 

  
 

  

= 1
4

2Pi
k=1

N

∑ 2Pk
i =1

N

∑  e jθ i e− jθk + e jθk e− jθi + e jθ i e jθ k + e− jθ i e− jθ k[ ]

=
1
4

2Pi
k=1

N

∑ 2Pk
i =1

N

∑  e j (θ i −θ k ) + e− j(θi − θk ) + e j(θi + θk ) + e− j(θ i +θ k )[ ]

= Pi +
1
2i=1

N

∑  2Pi
k≠ i

N

∑ 2Pk
i =1

N

∑  e j(θ i −θ k ) + e− j(θ i − θk )[ ]

where the last two terms in the second-last line drop out because they are beyond

the response frequency of the detector. Thus,

  
P = Pi +

i=1

N

∑ 2 PiPk
k ≠i

N

∑
i=1

N

∑  cos θ i − θk( )[ ]

11-14. (a) For N input signals, the output signal level is given by

  
Ps,out = G Ps,in

i =1

N

∑ (i) ≤1 mW .

The inputs are 1 µW (-30 dBm) each and the gain is 26 dB (a factor of 400).
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Thus for one input signal, the output is (400)(1 µW) = 400 µW or –4 dBm.

For two input signals, the total output is 800 µW or –1 dBm. Thus the level of

each individual output signal is 400 µW or –4 dBm.

For four input signals, the total input level is 4 µW or –24 dBm. The output then

reaches its limit of 0 dBm, since the maximum gain is 26 dB. Thus the level of each

individual output signal is 250 µW or –6 dBm.

Similarly, for eight input channels the maximum output level is o dBm, so the level

of each individual output signal is 1/8(1 mW) = 125 µW or –9 dBm.

(b) When the pump power is doubled, the outputs for one and two inputs remains

at the same level. However, for four inputs, the individual output level is 500 µW

or –3 dBm, and for 8 inputs, the individual output level is 250 µW or –6 dBm.

11-15. Substituting the various expressions for the variances from Eqs. (11-26) through

(11-30) into the expression given for Q in the problem statement, we find

Q =
AP

HP + D2( )1 / 2
+ D

where we have defined the following terms for simplicity

  A = 2R G

  H = 4qR GB+ 8R
2GSASEB and D2 = σoff

2

Rearrange terms in the equation for Q to get

Q2 HP + D2( )1/ 2
= AP − QD

Squaring both sides and solving for P yields  P =
2QD

A
+

Q2H
A2

Substituting the expressions for A, H, and D into this equation, and recalling the

expression for the responsivity from Eq. (6-6), then produces the result stated in

the problem, where
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F =
1 + 2ηn sp(G −1)

ηG


