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Problem Solutions for Chapter 2

2-1.

  

E = 100cos  2π108 t + 30°( ) ex + 20 cos  2π108t − 50°( ) ey

+  40cos  2π108 t + 210°( ) ez

2-2. The general form is:

y = (amplitude) cos(ωt - kz) = A cos [2π(νt - z/λ)]. Therefore

(a) amplitude = 8 µm

(b) wavelength: 1/λ = 0.8 µm-1  so that λ = 1.25 µm

(c) ω = 2πν = 2π(2) = 4π

(d) At t = 0 and z = 4 µm we have

y = 8 cos [2π(-0.8 µm-1)(4 µm)]

   = 8 cos [2π(-3.2)] = 2.472

2-3. For E in electron volts and λ in µm we have E = 
1.240

λ

(a) At 0.82 µm, E = 1.240/0.82 = 1.512 eV

     At 1.32 µm, E = 1.240/1.32 = 0.939 eV

     At 1.55 µm, E = 1.240/1.55 = 0.800 eV

(b) At 0.82 µm, k = 2π/λ = 7.662 µm-1

     At 1.32 µm, k = 2π/λ = 4.760 µm-1

     At 1.55 µm, k = 2π/λ = 4.054 µm-1

2-4. x1 = a1 cos (ωt - δ1)  and  x2 = a2 cos (ωt - δ2)

Adding x1 and x2 yields

x1 + x2 = a1 [cos ωt  cos δ1 + sin ωt  sin δ1]

+ a2 [cos ωt  cos δ2 + sin ωt  sin δ2]

= [a1 cos δ1 + a2 cos δ2] cos ωt + [a1 sin δ1 + a2 sin δ2] sin ωt

Since the a's and the δ's are constants, we can set

a1 cos δ1 + a2 cos δ2 = A cos φ (1)
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a1 sin δ1 + a2 sin δ2 = A sin φ (2)

provided that constant values of A and φ exist which satisfy these equations. To

verify this, first square both sides and add:

A2 (sin2 φ + cos2 φ) = a1
2 sin2 δ1 + cos2 δ1( )

+ a2
2 sin2 δ2 + cos2 δ2( ) + 2a1a2 (sin δ1 sin δ2 + cos δ1 cos δ2)

or

A2 =    a1
2 + a2

2   + 2a1a2 cos (δ1 - δ2)

Dividing (2) by (1) gives

tan φ = 
a1 sinδ1 + a2 sinδ2

a1 cosδ1 + a2 cosδ2

Thus we can write

x = x1 + x2 = A cos φ cos ωt + A sin φ sin ωt = A cos(ωt - φ)

2-5. First expand Eq. (2-3) as

Ey

E0 y

= cos (ωt - kz) cos δ - sin (ωt - kz) sin δ (2.5-1)

Subtract from this the expression

E x

E0 x

cos δ = cos (ωt - kz) cos δ

to yield

  

Ey

E0 y

-
Ex

E0x

 cos δ = - sin (ωt - kz) sin δ (2.5-2)

Using the relation cos2 α + sin2 α = 1, we use Eq. (2-2) to write
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sin2 (ωt - kz) = [1 - cos2 (ωt - kz)] = 1 −
Ex

E0x

 

 
  

 
 

2 

 
 

 

 
      (2.5-3)

Squaring both sides of Eq. (2.5-2) and substituting it into Eq. (2.5-3) yields

Ey

E0 y

− Ex

E0x

cosδ
 

  
 

  

2

= 1 −
Ex

E0x

 

 
  

 
 

2 

 
 

 

 
  sin2 δ

Expanding the left-hand side and rearranging terms yields

Ex

E0x

 

 
  

 
 

2

+ 
Ey

E0y

 

 
  

 
 

2

- 2 
Ex

E0x

 

 
  

 
 Ey

E0y

 

 
  

 
  cos δ = sin2 δ

2-6. Plot of Eq. (2-7).

2-7. Linearly polarized wave.

2-8. 

33 ° 33 °

90 °Glass

Air: n = 1.0

(a) Apply Snell's law

n1 cos θ1 = n2 cos θ2

where n1 = 1, θ1 = 33°,   and θ2 = 90° - 33° = 57°

∴ n2 = 
  

cos  33°
cos  57°

= 1.540

(b) The critical angle is found from

nglass sin φglass = nair sin φair
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with φair = 90° and nair = 1.0

∴ φcritical = arcsin 
1

n glass

= arcsin 
1

1.540
= 40.5°

2-9
Air

Water

12 cm

r

θ

Find θc from Snell's law n1 sin θ1 = n2 sin θc = 1

When n2 = 1.33, then θc = 48.75°

Find r from   tan θc = 
  

r
12  cm

 , which yields r = 13.7 cm.

2-10.

45 °

Using Snell's law    nglass sin θc = nalcohol sin 90°

where θc = 45° we have

nglass = 
  

1.45
sin  45°

= 2.05

2-11. (a) Use either  NA = n1
2 − n2

2( )1/ 2
= 0.242

or
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NA ≈ n1 2∆ = n1
2(n1 − n2)

n1

= 0.243

(b) θ0,max = arcsin (NA/n) = arcsin 
0.242
1.0

 
 

 
  = 14°

2-13. NA = n1
2 − n2

2( )1/ 2
= n1

2 − n1
2(1− ∆)2[ ]1/ 2

= n1 2∆ − ∆2( )1 / 2

Since ∆ << 1, ∆2 << ∆;  ∴  NA  ≈ n1 2∆

2-14. (a) Solve Eq. (2-34a) for jHφ:

jHφ = j 
εω
β

 Er - 
1
βr

∂Hz

∂φ
Substituting into Eq. (2-33b) we have

 j β Er + 
∂Ez

∂r
= ωµ j

εω
β

Er −
1

βr
∂Hz

∂φ
 

  
 

   

Solve for Er and let q2 = ω2εµ - β2  to obtain Eq. (2-35a).

(b) Solve Eq. (2-34b) for jHr:

jHr = -j 
εω
β

Eφ - 
1
β

∂Hz

∂r
Substituting into Eq. (2-33a) we have

 j β Eφ + 
1
r

∂Ez

∂φ
= -ωµ − j

εω
β

Eφ −
1

β
∂Hz

∂r
 
  

 
   

Solve for Eφ and let q2 = ω2εµ - β2  to obtain Eq. (2-35b).

(c) Solve Eq. (2-34a) for jEr:
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jEr = 
1

εω
1
r

∂Hz

∂φ
+ jrβHφ

 
 
  

 
Substituting into Eq. (2-33b) we have

 
β

εω
1
r

∂Hz

∂φ
+ jrβHφ

 
 
  

 
+ 

∂Ez

∂r
= jωµ Hφ

Solve for Hφ and let q2 = ω2εµ - β2  to obtain Eq. (2-35d).

(d) Solve Eq. (2-34b) for jEφ

jEφ = - 
1

εω
jβHr +

∂Hz

∂r

 
 

 
 Substituting into Eq. (2-33a) we have

1
r

∂Ez

∂φ
- 

β
εω

jβHr +
∂Hz

∂r

 
 

 
 = -jωµ Hr

Solve for Hr to obtain Eq. (2-35c).

(e) Substitute Eqs. (2-35c) and (2-35d) into Eq. (2-34c)

-
j

q 2

1
r

∂
∂r

β
∂Hz

∂φ
+ εωr

∂Ez

∂r

 
 
  

 
−

∂
∂φ

β
∂Hz

∂r
−

εω
r

∂Ez

∂φ

 
 
  

 
 

  
 

  = jεωEz

Upon differentiating and multiplying by jq2/εω we obtain Eq. (2-36).

(f) Substitute Eqs. (2-35a) and (2-35b) into Eq. (2-33c)

-
j

q2

1
r

∂
∂r

β
∂Ez

∂φ
− µω r

∂Hz

∂r

 
 
  

 
−

∂
∂φ

β
∂Ez

∂r
+

µω
r

∂Hz

∂φ

 
 
  

 
 

  
 

  = -jµωHz

Upon differentiating and multiplying by jq2/εω we obtain Eq. (2-37).

2-15. For ν = 0, from Eqs. (2-42) and (2-43) we have



7

Ez = AJ0(ur) e j(ωt − βz)   and  Hz = BJ0(ur) e j(ωt − βz)

We want to find the coefficients A and B. From Eqs. (2-47) and (2-51),

respectively, we have

C = 
Jν (ua)

K ν (wa)
 A   and    D = 

Jν (ua)
K ν (wa)

 B

Substitute these into Eq. (2-50) to find B in terms of A:

A 
jβν
a

 
 

 
 

1
u2 +

1
w2

 
 

 
 = Bωµ 

J' ν (ua)
uJ ν (ua)

+
K' ν (wa)
wKν(wa)

 

  
 

  

For ν = 0, the right-hand side must be zero. Also for ν = 0, either Eq. (2-55a) or (2-56a)

holds. Suppose Eq. (2-56a) holds, so that the term in square brackets on the right-hand

side in the above equation is not zero. Then we must have that B = 0, which from Eq. (2-

43) means that Hz = 0. Thus Eq. (2-56) corresponds to TM0m modes.

For the other case, substitute Eqs. (2-47) and (2-51) into Eq. (2-52):

0 = 
1

u 2 B
jβν
a

J ν(ua) + Aωε 1uJ'ν (ua) 
 

 
 

 +  
1

w2 B
jβν
a

Jν(ua) + Aωε2w
K' ν (wa)Jν(ua)

K ν(wa)

 

  
 

  

With k1
2  = ω2µε1 and k2

2  = ω2µε2  rewrite this as

Bν = 

  

ja

βωµ
 

1
1

u 2
+ 1

w2

 

 

 
 

 

 

 
 

 k1
2Jν + k2

2K ν[ ] A
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where Jν  and Kν  are defined in Eq. (2-54). If for ν = 0 the term in square brackets on the

right-hand side is non-zero, that is, if Eq. (2-56a) does not hold, then we must have that A

= 0, which from Eq. (2-42) means that Ez = 0. Thus Eq. (2-55) corresponds to TE0m

modes.

2-16. From Eq. (2-23) we have

∆  =  
n 1

2 − n2
2

2n1
2  = 

1
2

1 − n2
2

n1
2

 

 
  

 
 

∆ <<  1    implies n1 ≈ n2

Thus using Eq. (2-46), which states that  n2k = k2 ≤ β ≤ k1 = n1k, we have

  n2
2k2

= k2
2 ≈ n1

2k2
= k1

2 ≈  β2

2-17.

2-18. (a) From Eqs. (2-59) and (2-61) we have

M ≈
2π2a2

λ2 n1
2 − n2

2( )=
2π2a2

λ2 NA( )2

a =
M
2π

 
 

 
 

1/ 2 λ
NA

=
1000

2
 
 

 
 

1/ 2 0.85µm
0.2π

= 30.25µm

Therefore, D = 2a =60.5 µm

(b) M = 2π2 30.25µm( )2

1.32µm( )2 0.2( )2 = 414

(c) At 1550 nm, M = 300

2-19. From Eq. (2-58),
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V = 
  

2π (25 µm)
0.82  µm

 (1.48)2 − (1.46)2[ ]1/ 2
=  46.5

Using Eq. (2-61)   M ≈ V2/2 =1081 at 820 nm.

Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm.  From Eq. (2-72)

Pclad

P
 
 

 
 

total

≈ 
4
3

M-1/2  = 
4 ×100%
3 1080

= 4.1%

at 820 nm. Similarly, (Pclad/P)total  = 6.6% at 1320 nm and 7.8% at 1550 nm.

2-20 (a) At 1320 nm we have from Eqs. (2-23) and (2-57) that V = 25 and M = 312.

(b) From Eq. (2-72) the power flow in the cladding is 7.5%.

2-21. (a) For single-mode operation, we need V ≤ 2.40.

Solving Eq. (2-58) for the core radius a

  a = 
Vλ
2π

n1
2 − n2

2( )−1/ 2
=  

2.40(1.32µm)

2π (1.480)2 − (1.478)2[ ]1/ 2 = 6.55 µm

(b) From Eq. (2-23)

NA = n1
2 − n2

2( )1/ 2
=  (1.480)2 − (1.478)2[ ]1/ 2

= 0.077

(c) From Eq. (2-23), NA = n sin θ0,max. When n = 1.0 then

θ0,max = arcsin 
NA
n

 
 

 
 = arcsin 

0.077
1.0

 
 

 
 = 4.4°

2-22. n2 = n1
2 − NA2

= (1.458)2 − (0.3)2
= 1.427

a = 
λV

2πNA
= 

(1.30)(75)
2π(0.3)

= 52 µm



10

2-23. For small values of ∆ we can write  V ≈ 2πa

λ
 n1 2∆

For a = 5 µm we have  ∆ ≈ 0.002, so that at 0.82 µm

V ≈ 
  

2π (5 µm)
0.82  µm

 1.45 2(0.002) = 3.514

Thus the fiber is no longer single-mode. From Figs. 2-18 and 2-19 we see that the LP01

and the LP11 modes exist in the fiber at 0.82 µm.

2-24.

2-25. From Eq. (2-77)  Lp = 
2π
β

= 
λ

n y − nx

For Lp = 10 cm        ny - nx = 
  

1.3 ×10−6
 m

10−1
 m

= 1.3×10-5

For Lp = 2 m           ny - nx = 
  

1.3 ×10−6
 m

2 m
= 6.5×10-7

Thus

6.5×10-7  ≤  ny - nx  ≤  1.3×10-5

2-26. We want to plot n(r) from n2 to n1. From Eq. (2-78)

n(r) = n1 1− 2∆(r / a)α[ ]1 / 2
= 1.48 1− 0.02(r / 25)α[ ]1 / 2

n2 is found from Eq. (2-79):     n2 = n1(1 - ∆) = 1.465

2-27. From Eq. (2-81)

  
M =

α
α + 2

 a2k2n1
2∆ =

α
α + 2

 
2πan1

λ
 
 

 
 

2

∆

where

∆ = 
n1 − n2

n1

= 0.0135
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At λ = 820 nm,  M = 543  and at λ = 1300 nm,  M = 216.

For a step index fiber we can use Eq. (2-61)

Mstep ≈ 
V 2

2
 = 

1
2

2πa

λ
 
 

 
 

2

n1
2 − n2

2( )

At λ = 820 nm,  Mstep = 1078  and at λ = 1300 nm,  Mstep = 429.

Alternatively, we can let α = ∞ in Eq. (2-81):

Mstep = 
2πan1

λ
 
 

 
 

2

∆ = 
  

1086 at 820  nm

432  at 1300  nm
 
 
 

2-28. Using Eq. (2-23) we have

(a)  NA = n1
2 − n2

2( )1/ 2
= (1.60)2 − (1.49)2[ ]1/ 2

= 0.58

(b)  NA = (1.458)2 − (1.405)2[ ]1/ 2
= 0.39

2-29. (a) From the Principle of the Conservation of Mass, the volume of a preform rod

section of length Lpreform and cross-sectional area A must equal the volume of the fiber

drawn from this section. The preform section of length Lpreform is drawn into a fiber of

length Lfiber in a time t. If S is the preform feed speed, then Lpreform = St. Similarly, if s is the

fiber drawing speed, then Lfiber = st. Thus, if D and d are the preform and fiber diameters,

respectively, then

Preform volume = Lpreform(D/2)2 = St (D/2)2

and Fiber volume = Lfiber (d/2)2 = st (d/2)2

Equating these yields

St 
D
2

 
 

 
 

2

= st 
d
2

 
 

 
 

2

or s = S 
D
d

 
 

 
 

2

(b) S = s 
d
D

 
 

 
 

2

= 1.2 m/s  
  

0.125 mm
9  mm

 
 

 
 

2

= 1.39 cm/min
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2-30. Consider the following geometries of the preform and its corresponding fiber:

PREFORM
FIBER

4 mm

3 mm

R

25  µm 

62.5 µm

We want to find the thickness of the deposited layer (3 mm - R). This can be done by

comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber

core-to-cladding cross-sectional areas:

  

A preform core

Apreform clad

= 
  

A fiber core

Afiber clad

or
π(32 − R2 )

π(42 − 32 )
= 

  

π (25)2

π (62.5)2 − (25)2[ ]
from which we have

R = 9 − 7(25)2

(62.5)2 − (25)2

 
  

 
  

1/ 2

= 2.77 mm

Thus,  thickness = 3 mm - 2.77 mm = 0.23 mm.

2-31. (a) The volume of a 1-km-long 50-µm diameter fiber core is

V = πr2L = π (2.5×10-3 cm)2 (105 cm) = 1.96 cm3

The mass M equals the density ρ times the volume V:

M = ρV = (2.6 gm/cm3)(1.96 cm3) = 5.1 gm



13

(b) If R is the deposition rate, then the deposition time t is

t = 
M
R

= 
  

5.1 gm
0.5 gm /min

= 10.2 min

2-32. Solving Eq. (2-82) for χ yields

χ = 
K

Yσ
 
 

 
 

2

where  Y = π for surface flaws.

Thus

χ = 
  

(20 N / mm3 / 2 )2

(70  MN / m2 )2  π
= 2.60×10-4 mm = 0.26 µm

2-33. (a) To find the time to failure, we substitute Eq. (2-82) into Eq. (2-86) and

integrate (assuming that σ is independent of time):

  

 χ− b / 2
 

χi

χ f

∫ dχ  = AYbσb

0

t

∫ dt

which yields

1

1 − b
2

χf
1− b / 2 − χ i

1− b/ 2[ ] = AYbσbt

or

t = 
2

(b − 2)A(Yσ)b χ i
(2− b) / 2 − χf

(2− b) / 2[ ]

(b) Rewriting the above expression in terms of K instead of χ yields

t = 
2

(b − 2)A(Yσ)b

Ki

Yσ
 
 

 
 

2− b

− Kf

Yσ
 
 

 
 

2 −b 

  
 

  

   ≈ 
2Ki

2− b

(b − 2)A(Yσ)b if  K i
b− 2  << K f

b− 2    or    K i
2 −b >> Kf

2− b

2-34. Substituting Eq. (2-82) into Eq. (2-86) gives

dχ
dt

= AKb = AYbχb/2σb
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Integrating this from χ i  to χ p  where

χ i  = 
K

Yσ i

 

 
  

 
 

2

and    χ p  = 
K

Yσp

 

 
  

 
 

2

are the initial crack depth and the crack depth after proof testing, respectively, yields

  

 χ −b / 2
 

χ i

χ p

∫ dχ  = AYb

  

 σb
 

0

t p

∫ dt

or

  

1

1 − b
2

 χp
1− b / 2 − χi

1−b / 2[ ]= AYb σ p
b  tp

for a constant stress σp. Substituting for χ i  and  χ p  gives

2
b − 2

 
 

 
 

K
Y

 
 

 
 

2−b

σ i
b− 2 − σp

b− 2[ ]= AYb σ p
b  tp

or
2

b − 2
 
 

 
 

K
Y

 
 

 
 

2−b 1
AYb σ i

b− 2 − σp
b− 2[ ]= B σ i

b−2 − σp
b−2[ ]=  σ p

b  tp

which is Eq. (2-87).

When a static stress σs is applied after proof testing, the time to failure is found from Eq.
(2-86):

  

 χ −b / 2
 

χ p

χs

∫ dχ  = AYb 

  

σs
b 

0

t s

∫  dt

where χ s  is the crack depth at the fiber failure point. Integrating (as above) we get Eq. (2-
89):

B σp
b−2 − σs

b−2[ ]=  σs
b  ts

Adding Eqs. (2-87) and (2-89) yields Eq. (2-90).
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2-35. (a) Substituting Ns as given by Eq. (2-92) and Np as given by Eq. (2-93) into Eq.

(2-94) yields

F = 1 - exp −
L
L0

σp
btp + σs

bts( )/ B + σs
b−2[ ]

m
b−2

σ0
m −

σp
bt p / B + σp

b−2( )
m

b− 2

σ0
m

 

 
 

  

 

 
 

  

 

 

 
 

 

 

 
 

= 1 - exp
−

L
L0σ0

m σp
btp / B + σp

b− 2[ ]
m

b −2

σp
bt p + σs

bts

B

 

 
  

 
 + σs

b −2

σp
btp / B + σp

b− 2

 

 

 
 
 

 

 

 
 
 

m

b− 2
 

 

 
 

 

 
 

 

 

 
 

 

 
 

− 1

 

 

 
 
 
 

 

 

 
 
 
 

= 1 - exp −LN p

1 +
σs

b ts

σp
btp

+
σs

σp

 

 
  

 
 

b

B
σs

2t p

 

 
 

 

 
 

m

b −2

1 + B
σp

2t p

−1

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

≈ 1 - exp −LN p 1+
σs

bts

σp
b tp

 

 
  

 
 1

1+ B
σp

2 tp

 

 

 
 
 

 

 

 
 
 

m

b−2

− 1

 

 
  

 
 
 

 

 
  

 
 
 

 

 

 
 
  

 

 

 
 
 

(b) For the term given by Eq. (2-96) we have

σ s

σp

 

 
  

 
 

b
B

σs
2tp

= (0.3)15  

  

0.5  (MN /m2 )2  s

0.3 (350  MN / m2)[ ]2
10  s

= 6.5×10-14

Thus this term can be neglected.
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2-36. The failure probability is given by Eq. (2-85). For equal failure probabilities of the

two fiber samples, F1 = F2, or

1 - exp −
σ1c

σ0

 

 
  

 
 

m
L1

L0

 

 
 

 

 
 = 1 - exp −

σ2c

σ0

 

 
  

 
 

m
L2

L0

 

 
 

 

 
 

which implies that

σ1c

σ0

 

 
  

 
 

m
L1

L0

= 
σ2c

σ0

 

 
  

 
 

m
L2

L0

or

σ1c

σ2c

=  
L2

L1

 

 
  

 
 

1 / m

If L1 = 20 m, then σ1c= 4.8 GN/m2

If L2 = 1 km, then σ2c= 3.9 GN/m2

Thus
4.8
3.9

 
 

 
 

m

= 
1000

20
= 50

gives

m = 
log 50

log(4.8/ 3.9)
= 18.8


