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Problem Solutions for Chapter 10

10-1. In terms of wavelength, at a central wavelength of 1546 nm a 500-GHz channel

spacing is

  
∆λ =

λ2

c
 ∆f = 1546  nm( )2

3 ×108
 m / s

 500 ×10 9
 s−1 = 4 nm

The number of wavelength channels fitting into the 1536-to-1556 spectral band

then is

N = (1556 – 1536 nm)/4 nm = 5

10-2. (a)  We first find P1 by using Eq. (10-6):

  

10  log  
200 µW

P1

 

 
  

 
 = 2.7 dB   yields      P1 =10 (log  200 −0.27 ) = 107.4 µW

Similarly,     P2 = 10(log  200 −0.47) = 67.8 µW

(b) From Eq. (10-5):  Excess loss = 
  
10  log  

200
107.4 + 67.8

 
 

 
 = 0.58  dB

(c)
P1

P1 + P2

=
107.4
175.2

= 61% and
P2

P1 + P2

=
67.8

175.2
= 39%

10-3. The following coupling percents are are realized when the pull length is stopped at

the designated points:

Coupling percents from input fiber to output 2

Points A B C D E F
1310 nm 25 50 75 90 100 0
1540 nm 50 88 100 90 50 100

10-4. From  A out = s11Ain + s12Bin and Bout = s21Ain +s22 Bin = 0 , we have

Bin = −
s21

s22

A in and
  

A out = s11 −
s12s21

s22

 

  
 

   A in
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Then

T = Aout

Ain

2

= s11 − s12s21

s22

2

and R =
Bin

Ain

2

=
s21

s22

 

 
  

 
 ÷ s11 −

s12s21

s22

 

 
  

 
 

2

10-5. From Eq. (10-18)

P2

P0

= sin 2 0.4z( )exp −0.06z( ) = 0.5

One can either plot both curves and find the intersection point, or solve the

equation numerically to yield z = 2.15 mm.

10-6. Since βz ∝ n , then for nA > nB we have κA < κB. Thus, since we need to have

κALA = κBLB, we need to have LA > LB.

10-7. From Eq. (10-6), the insertion loss LIj for output port j is

L Ij = 10 log
Pi −in

Pj −out

 

 
  

 
 

Let

a j = Pi −in

Pj− out

= 10
L Ij /10

, where the values of LIj are given in Table P10-7.

Exit port no. 1 2 3 4 5 6 7
Value of aj 8.57 6.71 5.66 8.00 9.18 7.31 8.02

Then from Eq. (10-25) the excess loss is

  

10  log  
Pin

Pj∑
 

 
  

 
 = 10 log  

Pin

Pin

1
a1

+
1
a2

+ ... +
1
an

 
 
  

 
 

 

 

 
 
 

 

 

 
 
 

=10  log  
1

0.95
 
 

 
 = 0.22 dB

10-8. (a) The coupling loss is found from the area mismatch between the fiber-core

endface areas and the coupling-rod cross-sectional area. If a is the fiber-core radius

 and R is the coupling-rod radius, then the coupling loss is
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Lcoupling = 10 log 
Pout
Pin

    = 10 log 
7πa2

πR2     = 10 log 
7(25)2

(150)2    = -7.11 dB

(b) Similarly, for the linear-plate coupler

Lcoupling = 10 log 
7πa2

l∞w
    = 10 log 

7π(25)2

800(50)    = -4.64 dB

10-9. (a) The diameter of the circular coupling rod must be 1000 µm, as shown in the

figure below. The coupling loss is

Lcoupling = 10 log 
7πa2

πR2      = 10 log 
7(100)2

(500)2     = -5.53 dB

(b) The size of the plate coupler must be 200 µm by 2600 µm.

The coupling loss is  10 log 
7π(100)2

200(2600)    = -3.74 dB

10-10. The excess loss for a 2-by-2 coupler is given by Eq. (10-5), where P1 = P2 for a 3-

dB coupler. Thus,

200 µm

400
µm

Coupling rod
diameter
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Excess loss = 
  

10  log  
P0

P1 + P2

 

 
  

 
 = 10  log  

P0

2P1

 

 
  

 
 = 0.1 dB

This yields

  
P1 =

P0

2
 
 

 
 ÷10 0.01 = 0.977 

P0

2
 
 

 
 

Thus the fractional power traversing the 3-dB coupler is FT = 0.977.

Then, from Eq. (10-27),

Total loss = 
  

−10  log  
log  FT

log  2
− 1

 
 
  

 
log  N = −10  log  

log  0.977
log  2

−1
 
 
  

 
log  2 n ≤ 30

Solving for n yields

  

n ≤
−3

log  2 
log  0.977

log  2
− 1

 
 
  

 

= 9.64

Thus, n = 9  and  N = 2n = 29 = 512

10-11. For details, see Verbeek et al., Ref. 34, p. 1012

For the general case, from Eq. (10-29) we find

  M11 = cos  2κd( ) ⋅ cos  k∆L / 2( )+ j sin  k∆L / 2( )

  M12 = M21 = j sin  2κd( )⋅ cos  k∆L / 2( )

  M 22 = cos  2κd( )⋅ cos  k∆L / 2( )− j sin  k∆L / 2( )

The output powers are then given by

Pout ,1 = cos2 2κd( )⋅ cos2 k∆L /2( )+ sin2 k∆L / 2( )[ ]Pin,1

+ sin 2 2κd( )⋅ cos2 k∆L / 2( )[ ]Pin,2
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Pout ,2 = sin 2 2κd( ) ⋅cos2 k∆L / 2( )[ ]Pin,1

+ cos2 2κd( )⋅ cos2 k∆L /2( ) + sin2 k∆L / 2( )[ ]Pin,2

10-12. (a) The condition ∆ν = 125 GHz is equivalent to having ∆λ = 1 nm. Thus the

other three wavelengths are 1549, 1550, and 1551 nm.

(b) From Eqs. (10-42) and (10-43), we have

  

∆L1 =
c

2n eff (2∆ν)
= 0.4  mm and

  

∆L3 =
c

2n eff ∆ν
= 0.8 mm

10-13. An 8-to-1 multiplexer consists of three stages of 2 × 2  MZI multiplexers. The first

stage has four 2 × 2  MZIs, the second stage has two, and the final stage has one

2 × 2  MZI. Analogous to Fig. 10-14, the inputs to the first stage are (from top to

bottom) ν, ν + 4∆ν, ν + 2∆ν, ν + 6∆ν, ν + ∆ν, ν + 5∆ν, ν + 3∆ν, ν + 7∆ν.

In the first stage

  

∆L1 = c
2n eff (4∆ν)

= 0.75 mm

In the second stage

  
∆L2 =

c
2neff (2∆ν)

= 1.5 mm

In the third stage

  

∆L3 =
c

2n eff (∆ν)
= 3.0 mm

10-14. (a) For a fixed input angle φ, we differentiate both sides of the grating equation to
get

cos θ dθ = 
k

n'Λ    dλ or
dθ
dλ    = 

k
n'Λ cos θ   

If φ ≈ θ, then the grating equation becomes 2 sin θ = 
kλ
n'Λ   .
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Solving this for 
k

n'Λ    and substituting into the 
dθ
dλ    equation yields

dθ
dλ    = 

2 sin θ
λ cos θ    = 

2 tan θ
λ    

(b) For S = 0.01,

tan θ = 






Sλ

2∆λ (1+m)

1/2
    = 

0.01(1350)
2(26)(1+ 3)

 
  

 
  

1/ 2

= 0.2548

or θ = 14.3°

10-15. For 93% reflectivity

R = tanh 2(κL) = 0.93  yields κL = 2.0, so that L = 2.7 mm for κ = 0.75 mm-1.

10-16. See Bennion et al., Ref. 42, Fig. 2a.

10-17. Derivation of Eq. (10-49).

10-18. (a) From Eq. (10-45), the grating period is

  

Λ =
λuv

2 sin θ
2

=
244  nm

2 sin(13.5°)
=

244
2(0.2334)

 nm = 523 nm

(b) From Eq. (10-47), 
  
λ Bragg = 2Λn eff = 2(523 nm) 1.48 =1547  nm

(c) Using η = 1− 1/ 2 = 0.827 , we have from Eq. (10-51),

  

κ =
π δn η
λBragg

=
π 2.5 ×10 −4( )(0.827)

1.547 ×10−4  cm
= 4.2 cm −1

(d) From Eq. (10-49), 
  
∆λ = 1.547 µm( )2

π (1.48) 500  µm
 (2.1)2 + π2[ ]1 / 2

= 3.9  nm
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(e) From Eq. (10-48), Rmax = tanh 2(κL) = tanh 2(2.1) = (0.97)2 = 94%

10-19. Derivation of Eq. (10-55).

10-20. (a) From Eq. (10-54),

  
∆L = m 

λ 0

n c

= 118 
1.554 µm

1.451
= 126.4  µm

(b) From Eq. (10-57),

  

∆ν = x
L f

 
n scd
mλ2

 
n c

ng

=
25 µm

9.36 × 103  µm
 
1.453 (3 ×10 8  m / s)(25 ×10 −6  m)

118 (1.554 ×10 −6  m)2
 
1.451
1.475

= 100.5 GHz

  
∆λ =

λ2

c
 ∆ν =

(1.554 ×10−6  m)2

3 × 108  m / s
 100.5 GHz = 0.81 nm 

(c) From Eq. (10-60),

  

∆νFSR =
c

ng∆L
=

3 ×108  m / s
1.475(126.4  µm)

= 1609 GHz

Then

  
∆λ =

λ2

c
 ∆νFSR =

(1.554 × 10−6  m)2

3 × 108
 m / s

 1609 GHz =12.95  nm 

(d) Using the conditions

  
sin θ i ≈ θ i =

2(25 µm)
9380 µm

= 5.33 ×10 −3  radians

and

  sin θo ≈ θo = 21.3 ×10−3
 radians
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then from Eq. (10-59),

  

∆νFSR ≈ c
ng [∆L + d θ i + θo( )]

= 3 × 108  m /s
1.475 (126.4 × 10−6  m) + (25 ×10−6  m) 5.33 + 21.3( )×10−3[ ]= 1601 GHz

10-21. The source spectral width is

  

∆λsignal =
λ2 ν
c

=
1550  nm( )2 (1.25 ×10 9  s−1)
(3 ×10 8

 m / s) 109
 nm / m( ) =1 × 10−2

 nm

Then from Eq. (10-61)

  
∆λtune = λ

∆n eff

n eff

= 1550 nm( ) 0.5%( ) = 7.75 nm

Thus, from Eq. (10-63)

  

N =
∆λ tune

10  λ signal

=
7.75 nm

10 0.01 nm( )
= 77

10-22. (a) From Eq. (10-64), the grating period is

  
Λ =

λBragg

2neff

=
1550  nm

2 3.2( )
= 242.2 nm

(b) Again, from the grating equation,

  
∆Λ =

∆λ
2n eff

=
2.0  nm
2 3.2( )

= 0.3 nm

10-23. (a) From Eq. (10-43)

  

∆L = c
2n eff ∆ν

=
λ2

∆λ
1

2neff

= 4.0 mm

(b) ∆Leff = ∆n eff L   implies that  
  
∆n eff = 4  mm

100 mm
= 0.04 = 4%



9

10-24. For example, see C. R. Pollock, Fundamentals of Optoelectronics, Irwin, 1995,

Fig. 15.11, p. 439.

10-25. (a) The driving frequencies are found from

fa = νo

v a∆n
c

=
va ∆n

λ

Thus we have

Wavelength (nm) 1300 1546 1550 1554
Acoustic
frequency (MHz)

56.69 47.67 47.55 47.43

(b) The sensitivity is (4 nm)/(0.12 MHz) = 0.033 nm/kHz


