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Problem Solutions for Chapter 13

13-1 (a) From the given equation, nair = 1.000273. Thus,

  λ vacuum = λairn air =1.000273(1550.0  nm) = 1550.42  nm

(b) From the given equation,

n T, P( )= 1 +
(1.000273 − 1)(0.00138823)640

1+ 0.003671(0)
= 1.000243

Then     n T, P( )1550  nm( ) =1550.38 nm

13-2 Since the output voltage from the photodetector is proportional to the optical

power, we can write Eq. (13-1) as

α = 10
L1 − L2

log
V2

V1

where L1 is the length of the current fiber, L2 is the length cut off, and V1 and V2

are the voltage output readings from the long and short lengths, respectively. Then

the attenuation in decibels is

  
α =

10
1895 − 2

 log  
3.78
3.31

= 0.31 dB / km

13-3 (a) From Eq. (13-1)

  

α =
10

LN − LF

 log  
PN

PF

=
10

LN − LF

 log  
VN

VF

=
10 log  e
LN − LF

 ln  
VN

VF

From this we find

  

∆α = 10  log  e
L N − LF

∆VN

VN

+
∆VF

VF

 

  
 

  =
4.343

LN − LF

±0.1% ± 0.1%( )= ± 8.686
LN − LF

×10 −3

(b) If ∆α = 0.05 dB/km, then

  
L = LN − LF ≥

8.868 ×10−3

0.05
 km = 176 m
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13-4 (a) From Eq. (8-11) we have

1

2π σ
   exp







- 
t
2
1/2

2σ2    = 
1
2 

1

2π σ
  which yields t1/2 = (2 ln 2)1/2 σ

(b) From Eq. (8-10), the 3-dB frequency is the point at which

G(ω) = 
1
2   G(0), or exp 








- 
(2πf3dB)2 σ2

2    = 
1
2  

Using σ as defined in Eq. (8-13), we have

f3dB =  
(2 ln 2)1/2

2πσ    = 
2 ln 2

π tFWHM
   = 

0.44
tFWHM

  

13-5 From Eq. (13-4), Pout (f) / Pin (f) = H(f) . To measure the frequency response, we

need a constant input amplitude, that is, Pin(f) = Pin(0). Thus,

P(f)
P(0)

=
Pout (f) / Pin (f)
Pout (0) / Pin (0)

=
H(f)
H(0)

= H(f)

The following table gives some representative values of H(f) for different values of
2σ:

f (MHz) 2σσ = 2 ns 2σσ = 1 ns 2σσ = 0.5 ns
100 0.821 0.952 0.988
200 0.454 0.821 0.952
300 0.169 0.641 0.895
500 0.0072 0.291 0.735
700 0.089 0.546
1000 0.0072 0.291

13-6 To estimate the value of D, consider the slope of the curve in Fig. P13-6 at λ =

1575 nm. There we have ∆τ = 400 ps over the wavelength interval from 1560 nm

to 1580 nm, i.e., ∆λ = 20 nm. Thus

  
D =

1
L

∆τ
∆λ

=
1

10 km
400  ps
20 nm

= 2  ps /(nm ⋅ km)
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Then, using this value of D at 1575 nm and with λ0 = 1548 nm, we have

  
S0 =

D λ( )
λ − λ0

=
2 ps /(nm ⋅ km)

(1575 − 1548) nm
= 0.074  ps /(nm 2 ⋅ km)

13-7 With k = 1, λstart = 1525 nm, and λstop = 1575 nm, we have Ne = 17 extrema.

Substituting these values into Eq. (13-14) yields 1.36 ps.

13-8 At 10 Gb/s over a 100-km link, the given equation yields:

  

PISI ≈ 26
1 ps( )2 0.5 1− 0.5( )

100 ps( )2 = 6.5 ×10−4  dB

Similarly, at 10 Gb/s over a 1000-km link,   PISI ≈ 0.065 dB .

This is the same result at 100 Gb/s over a 100-km link.

At 100 Gb/s over a 1000-km link, we have 6.5 dB.

13-9 For a uniform attenuation coefficient, β is independent of y. Thus, Eq. (13-16)

becomes

P(x) = P(0)exp −β dy
0

x

∫
 

  
 

  = P(0)e−βx

Writing this as  exp(−βx) = P(0)/ P(x)  and taking the logarithm on both sides

yields

  
βx log  e = log  

P(0)
P(x)

. Since   α = β(10 log  e) , this becomes

  
αx =10  log  

P(0)
P(x)

For a fiber of length x = L with P(0) = PN being the near-end input power, this

equation reduces to Eq. (13-1).
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13-10 Consider an isotropically radiating point source in the fiber. The power from this

point source is radiated into a sphere that has a surface area 4πr2. The portion of

this power captured by the fiber in the backward direction at a distance r from the

point source is the ratio of the area A = πa2 to the sphere area 4πr2. If θ is the

acceptance angle of the fiber core, then A = πa2 = π(rθ)2. Therefore S, as defined

in Eq. (13-18), is given by

S =
A

4πr2 =
πr 2θ2

4πr2 =
θ2

4

From Eq. (2-23), the acceptance angle is

  
sin  θ ≈ θ =

NA
n

, so that S =
θ2

4
=

NA( )2

4n2

13-11 The attenuation is found from the slope of the curve, by using Eq. (13-22):

Fiber a:  
  

α =
10  log  

PD(x1)
PD(x2 )

2 x2 − x1( )
=

10  log  
70
28

2 0.5 km( )
= 4.0 dB / km

Fiber b:  
  

α =
10  log  

25
11

2 0.5 km( )
= 3.6  dB/ km

Fiber c:  
  
α =

10  log  
7

1.8
2 0.5 km( )

= 5.9 dB/ km

To find the final splice loss, let P1 and P2 be the input and output power levels,

respectively, at the splice point. Then for

For splice 1:  
  
Lsplice =10  log  

P2

P1

= 10 log  
25
28

= −0.5 dB

For splice 2:  
  
Lsplice =10  log  

7
11

= −2.0 dB

13-12 See Ref. 42, pp. 450-452 for a detailed and illustrated derivation.
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Consider the light scattered from an infinitesimal interval dz that is located at L =

Tvgr. Light scattered from this point will return to the OTDR at time t = 2T. Upon

inspection of the pulse of width W being scattered form the point L, it can be

deduced that the back-scattered power seen by the OTDR at time 2T is the

integrated sum of the light scattered from the locations z = L – W/2 to z = L.

Thus, summing up the power from infinitesimal short intervals dz from the whole

pulse and taking the fiber attenuation into account yields

  

Ps L( ) =  Sαs
0

W

∫ P0 exp  −2α L +
z
2

 
 

 
 

 
  

 
   dz

= S 
αs

α
 P0 e

−2αL 1− e− αW( )

which holds for L ≥ W/2. For distances less than W/2, the lower integral limit gets

replaced by W – 2L.

13-13 For very short pulse widths, we have that αW << 1. Thus the expression in

parenthesis becomes

1
α

1 − e−αW( )≈ 1
α

1 − 1− αW( )[ ]= W

Thus

  Ps L( ) ≈ S αs W P0 e
−2αL

13-14 (a) From the given equation, for an 0.5-dB accuracy, the SNR is 4.5 dB.

The total loss of the fiber is (0.33 dB/km)(50 km) = 16.5 dB.

The OTDR dynamic range D is

  

D = SNR + αL + splice  loss

= 4.5 dB +16.5 dB + 0.5  dB = 21.5 dB
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Here the splice loss is added to the dynamic range because the noise that limits the

achievable accuracy shows up after the event.

(b) For a 0.05-dB accuracy, the OTDR dynamic range must be 26.5 dB.

13-15 To find the fault-location accuracy dL with an OTDR, we differentiate Eq. (13-
23):

dL =
c

2n
dt

where is the accuracy to which the time difference between the original and

reflected pulses must be measured. For dL ≤ 1 m, we need

  
dt =

2n
c

dL ≤
2(1.5)

3 × 108
 m / s

(0.5 m) = 5 ns

To measure dt to this accuracy, the pulse width must be ≤ 0.5dt (because we are

measuring the time difference between the original and reflected pulse widths).

Thus we need a pulse width of 2.5 ns or less to locate a fiber fault within 0.5 m of

its true position.


