Problem Solutionsfor Chapter 2

2-1.

2-2.

2-4.

E =100cos (2p10°t +30°) e, +20cos (2p10° - 50°) e,

+ 40cos (2p10°t +210°) e,
The general formis:
y = (amplitude) cos(wt - kz) = A cos[2p(nt - Z/l )]. Therefore
() amplitude = 8 m
(b) wavelength: 1/1 = 0.8 ! sothat| =1.25 mm
()w=2pn=2p(2) =4p
(d) Att=0and z = 4 nm we have

y = 8 cos[2p(-0.8 m1)(4 nm)]

=8cos[2p(-3.2)] = 2.472

For E in electron voltsand | inmm we have E = 1.240

(a) At 0.82 nm, E = 1.240/0.82 = 1.512 eV
At 1.32 mm, E = 1.240/1.32 = 0.939 eV
At 1.55 mm, E = 1.240/1.55 = 0.800 eV

(b) At 0.82 nm, k = 2p/I =7.662 nml
At 1.32 mm, k = 2p/l =4.760 mml
At 1.55 mm, k = 2p/l = 4.054 mml

X1 =@ cos (Wt - d1) and X2 = ap cos (Wt - do)
Adding x1 and xo yields
X1+ X2 =a [coswt cosd; + Snwt Sin dq]
+a[coswt cosdy +sSnwt sindy]
=[ap cosdy + ap cosdy] coswt + [a; Sndy + ap Sndy] Snwt
Since the ds and the d's are constants, we can set

a1 cosd; + apcosdy = A cosf @



2-5.

a9nd;+asndy=A sanf 2
provided that constant values of A and f exist which satisfy these equations. To

verify this, first square both sides and add:
A2 (sin2f + cos?f) = & (sin’ d, +cos’ d, )

+ ai(sin2 d, +cos’ dz) + 2aqap (sin dq sin dp + cos dp cos dy)
or

A2= a’+a +2aap cos(d - dp)
Dividing (2) by (1) gives

_ a,9nd, +a,snd,
a, cosd, +a, cosd,

Thus we can write

X=X1+Xp=Acosf coswt+Asnf snwt=A cos(wt - f)

First expand Eq. (2-3) as

E . .
Echos(wt- kz) cosd- sin (wt - kz) sind (2.5-1)

Oy

Subtract from this the expression

E cosd = cos (W - kz) cosd
0x

toyield

E . .
-—* cosd=-gn(w-kz)snd (2.5-2)
E E,,

Oy

l(rn

Using the relation cos? a + sin? a = 1, we use Eq. (2-2) to write



2-6.
2-7.
2-8.

"0 (2.5-3)
a

Plot of Eq. (2-7).

Linearly polarized wave.

Airrn=1.0

33° 33°

Glass 90 °

(& Apply Snell'slaw
N1 COS (1 = N2 COS Q2
wheren; =1, g1 = 33°, and g =90° - 33° = 57°

_cos 33°
cos 57°

1.540

(b) The critical angle is found from

Nglass anf glass = Nair anf gy



with f 5y = 90° and ngy = 1.0

: . 1
\' f ritical = arcsin = arcsin =40.5°
ngla$ 1 O
2-9
Air r
Water
q
12 cm
Find gc from Snell's law npsngi=n2snqgc=1
When np = 1.33, then q¢c = 48.75°
Findr from tanqc= ' , whichyieldsr = 13.7 cm.
12 cm
2-10.

Using Snell'slaw  Ngjass SN gc = Nalcohol Sin 90°

where q¢ = 45° we have
1.45

sn 45°

ng|ass = =2.05

2-11. (a) Usedither NA = (0°- n2)'"= 0.242

or



2(n, - n,)

NA » nl-ﬁz ni. =0.243

n

82425
€10 9 14

(b) go,max = arcsin (NA/n) = arcsin

213 NA=(nZ- )" =[nZ- nZ(2- Dy]"

=m (2D- Dz)ll2

SinceD<<1,D2<<D; \ NA »n~/2D

2-14. (@) Solve Eq. (2-344) for jHs:

it =] g - LM g ntituting into Eq. (2-33b) we have
b br ff
e.ew 1 9H,u
bE + 2= ym G g o 2 I
IO B g =wm g e 6

Solve for E; and let g2 = w2em- b2 to obtain Eq. (2-35a).

(b) Solve Eq. (2-34b) for jH;:

JHr =] FEf - % L Substituting into Eq. (2-33a) we have
19E é . ew 1 9H, u
bE+-——*=-wms|—E - —=_
e A e

Solve for E¢ and let g2 = w2em- b2 to obtain Eq. (2-35b).

(©) Solve Eq. (2-344) for jE;:



Substituting into Eq. (2-33b) we have

H
@1 be ﬂEZ = jwmHs
ew re 'ﬂf qr

Solve for Hy and let g2 = w2em- b2 to obtain Eq. (2-35d).

(d) Solve Eq. (2-34b) for jEf

iEr =- =By +1H:0 Substituting into Eq, (2-33a) we have
SVAS ﬂr 4]

19E

_ﬂ_l_ EﬁbHr ﬂ_HZO _meHr

r f ewe Ir @

Solve for Hy to obtain Eqg. (2-35c).

(e) Substitute Egs. (2-35¢) and (2-35d) into Eq. (2-34c¢)

e, JE0 IR, ewfE
q° r@'ﬂre qf S ir 2 ﬂfgg qr roqf ﬂH JOnE

Upon differentiating and multiplying by jg2/ew we obtain Eq. (2-36).

H Substitute Egs. (2-35a) and (2-35b) into Eq. (2-33c)

LIST@IE, | 6 TR T, w i, o
q° rS‘ITre i r @ 'er r ‘HfﬂH

- MwH;

Upon differentiating and multiplying by jg2/ew we obtain Eq. (2-37).

2-15. For n =0, from Egs. (2-42) and (2-43) we have



Ez=Ado(ur) €™ and H; =BJ(ur) ™™

We want to find the coefficients A and B. From Egs. (2-47) and (2-51),

respectively, we have

C= Jy (ua) A ad D= Jy (ua)

K (wa) K (wa)

Substitute these into Eq. (2-50) to find B in terms of A:

aﬁl(‘j&_l+ib_8 eJ (ua) K', (wa)u
e a ®y wo 8ul_ (ua) wK_(wa)H

For n = 0, the right-hand side must be zero. Also for n = 0, either Eq. (2-55a) or (2-56a)
holds. Suppose Eq. (2-564) holds, so that the term in square brackets on the right-hand
side in the above equation is not zero. Then we must have that B = 0, which from Eg. (2-

43) meansthat H; = 0. Thus Eq. (2-56) corresponds to TMom modes.

For the other case, substitute Egs. (2-47) and (2-51) into Eq. (2-52):

Ozi:ij J.(ua) + Awe,uJ', (ua)

jbn K', (wa)J,(ua) u
3 J,(ua) + Awe,w K (wa) H




where J, and K, are defined in Eq. (2-54). If for n = 0 the term in square brackets on the

right-hand side is non-zero, that is, if Eq. (2-56a) does not hold, then we must have that A
= 0, which from Eq. (2-42) means that E; = 0. Thus Eq. (2-55) corresponds to TEgm

modes.

2-16. From Eq. (2-23) we have

2 2 25
D = nl'znz zla_ﬂgg
2n; 2e n@

D<< 1 impliesny»m

Thususing Eq. (2-46), which statesthat nok = ko £ b £ k1 = n1k, we have

2,2 1,2 2,2 12 2
Nk =k; »nik” =k » b

2-17.

2-18. (@) From Egs. (2-59) and (2-61) we have

2p2a2 2p2a2
M » | 2 (n12 - 5): | 2 (NA)Z
U2 2
_aMg"* | _ ad0005"* 0.85mm

a=- =3
€2p2 NA € 2 9 02p
Therefore, D = 2a=60.5 nm

2p”(30.25mm)’
(1.32mmY’

(b) M = (0.2)° =414

(c) At 1550 nm, M = 300
2-19. From Eq. (2-58),



V= 2p (25 mm)

Cop [(48)*- (146)2] "= 465

Using Eq. (2-61) M » V2/2=1081 at 820 nm.
Similarly, M =417 at 1320 nm and M = 303 at 1550 nm. From Eq. (2-72)

6 4 4" 100%
T—clad » =—MV2 = —==41%
€P g, 3 3v1080

at 820 nm. Similarly, (Pejad/P)tota = 6.6% at 1320 nm and 7.8% at 1550 nm.

2-20 (@) At 1320 nm we have from Egs. (2-23) and (2-57) that V = 25 and M = 312.
(b) From Eqg. (2-72) the power flow in the cladding is 7.5%.

2-21. (@) For single-mode operation, we need V £ 2.40.

Solving Eq. (2-58) for the coreradius a

VI, oyuz 2.40(1.32mm)
a= 2_(n1 ) 2) - 2 22
p 2p[(1.480)% - (L.478)°]

=6.55mM

(b) From Eqg. (2-23)

NA= (- ) = [(1.480) - (1478)] "= 0.077
(c) From Eq. (2-23), NA = n sin do max- When n = 1.0 then

alNA §_ . a®.077¢

— ; O_ o
Jo,max = @can =ar =44
€no €10 9

2-22. mp=./ni- NA®=(1458)" - (0.3° = 1.427

_ IV _@30@8) g, o
20NA  2p(0.3)




2-23. For smal vaues of D we can write V » %@ n1 2D

For a=5 mmwe have D » 0.002, so that at 0.82 mm

2p (5 n‘m)
V » —— 1.45 /2(0.002) = 3.514
0.82 Mm ( )

Thus the fiber is no longer single-mode. From Figs. 2-18 and 2-19 we see that the LPp1

and the LP11 modes exist in the fiber at 0.82 nm.

2-24.
2p I
2-25. FromEq. (2-77) Lp=—=
% ) L b n,-n
1.3°10°m
For L, =10cm -ny=————=13105
P My~ 10 m
1.3 10°°
ForLp=2m ny-nxz%=6.5' 107

Thus
6.5 107 £ ny-ny £ 1.3 105

2-26. \We want to plot n(r) from ny to ny. From Eq. (2-78)
n(r) = ny [1- 2D(r/a) ] *= 148 [1- 0.02(r/ 25 ]

ny isfound from Eq. (2-79): nz2=ny(1- D) = 1.465

2-27. From Eq. (2-81)

2
M=—2_ akinip=—2_ EPAG
a+2 a+2¢€ | 9
where

D= ﬂln—”z = 0.0135

1

10



Atl =820nm, M =543 andat| =1300 nm, M = 216.

For a step index fiber we can use Eq. (2-61)

V? _laPpa
Mstep»—zze IpO( -n)

Atl =820nm, Mgep=1078 andat| = 1300 nm, Mgep = 429.
Alternatively, we can let a =¥ in Eq. (2-81):

M ae?panl 6 b= | 1086 at 820 nm
S~ g | o 1432 at 1300 nm

2-28. Using Eq. (2-23) we have
(@ NA= (n°- n2)"*=[(1.60)- 1.49)’] “=0.58

(b) NA = [(1.458)° - (1.405)°] *=0.39
2-29. (@) From the Principle of the Conservation of Mass, the volume of a preform rod
section of length L peform @Nd cross-sectional area A must equal the volume of the fiber
drawn from this section. The preform section of length L peorm 1S drawn into a fiber of
length Lyiper in atimet. If Sisthe preform feed speed, then L pgorm = St. Similarly, if sisthe
fiber drawing speed, then Lipe = St. Thus, if D and d are the preform and fiber diameters,

respectively, then

Preform volume = L yeom(D/2)2 = St (D/2)2
and Fiber volume = Liipe (d/2)2 = st (d/2)2

Equating these yields

&Do oy’ _caDp
St Stezz or S—Sédﬂ
0  S=sF0=12ms mo_lsgcm/mm

épo

11



2-30. Consder the following geometries of the preform and its corresponding fiber:

25 nin
4 mm
" 62.5 m
3 mm

FIBER
PREFORM

We want to find the thickness of the deposited layer (3 mm - R). This can be done by

comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber
core-to-cladding cross-sectional areas.

A A

preform core _ fiber core

Apreform clad Afiber clad

or
pEF-R)__ p(25)
p(4-F)  p 6257 - (25]
from which we have
. 2 \1/2
_ € 7(25 u

"€ G2y - @ ™

Thus, thickness=3 mm - 2.77 mm = 0.23 mm.

2-31. (@) Thevolume of a 1-km-long 50-nm diameter fiber coreis

V =praL = p (2.5 103 cm)2 (10° cm) = 1.96 cm3

The mass M equals the density r times the volume V:

M =rV = (2.6 gm/cm3)(1.96 cm3) = 5.1 gm

12



(b) If R isthe deposition rate, then the deposition timet is

_M_ 51gm

———=10.2min
R 05gm/min

2-32. Solving Eq. (2-82) for ¢ yields

K .2
=%20  \where Y=-p for surface flaws.
eYS 1]

Thus

_ (20 N /mm?3/2)2

(70 MN/ )2 p =2.60" 104 mm = 0.26 mm

2-33. (a) Tofind the timeto failure, we substitute Eqg. (2-82) into Eg. (2-86) and
integrate (assuml ngthat s is mdependent of time):

OC ®2 dc —AYbsbodt

Ci

which yields
1- b/2 l— b/2|
b [c C ] = AYbsby

or
2 [C_(z- b)/2 _

— (2- b)/2]
(b- 2)A(Ys)’

- Cy

(b) Rewriting the above expression in terms of K instead of ¢ yields
S 2 &K Kol
(b- 2)A(Ys)" EYs? eys? §

2K,”"
»m if Kib'2<<K:)'2 or Kiz'b>>Kf2'b

2-34. Substituting Eq. (2-82) into Eq. (2-86) gives

de _ — AKb = Ay bcbi2gb
dt

13



Integrating thisfrom ¢, to ¢ ; where

2 2

K 0§ XK 0
c,=%——" ad c,=¢—~
eYs o eYs, o

aretheinitial crack depth and the crack depth after proof testing, respectively, yields

Cp t
Oc "2 dc = AYbys” dt
Ci 0

or

1 1- b/2 1-b/2
— [cp - G

- b
B I SV NCELR ™
1- =
2

for a constant stress sp. Substituting for ¢; and ¢, gives

2-b
& 2 58Ko" rbo

b- 2]— beab
€p- 208y o i Sp ] AYPSs, tp

or

& 2 ('ja_qu_b 1 b-2  _b-27_ b-2 b-2]_ b
€p- 298y 2 AYb[i " Sp ]_B[Si " Sp ]_Sptp

which is Eq. (2-87).

When a static stress ssis applied after proof testing, the time to failure is found from Eq.
(2-86):

CS tS
Oc "?dc =AYbs? ¢ dt
0

Cp

where ¢ isthe crack depth at the fiber failure point. Integrating (as above) we get Eq. (2-
89):

b-2 b-2 11— b
B[sp - S ]— S. ts

Adding Egs. (2-87) and (2-89) yields Eq. (2-90).

14



2-35. (@) Substituting Ns as given by Eq. (2-92) and Np as given by Eq. (2-93) into Eq.

(2-94) yidds
& b-2 b2\ 1O
o1 e LI[(St+St)/B+S ]_ (st/B+s )“'
= ex —_— -
g L, ! Sg y—
¢ °f ’ bo
e [ U 0
¢ eg%—p—p—t S:L,0 +s°P Ub_z'l' +
..ée B g s l:l .I.
G b- 2 A
- 1- expe [s t,/B+s, ]_le b /Beg? U Y 1+
p-p p l:l |
¢ S+
e %e u Io a
e | b U0
é Lh-2
G |el+SJbtA+(§%49 U T+
c ig S °t, €S, S o I+
=1-expe- LN, -1y,
¢ 1+ B
T 2 | .
g i Solo i+
e T bo
ool P2 o
i > - - %o
» 1-expG- LN i 91+545— LY 1y~
.I. < Sptp ﬂ1+ TB l:' -
L ol
(b) For the term given by Eq. (2-96) we have
b
&2 B = (0315 — MN/)'S 65 1014
és o st [0.3 (350 MN/m?)] 10 s

Thus this term can be neglected.

15



2-36. Thefailure probability is given by Eq. (2-85). For equal failure probabilities of the

two fiber samples, F1 = Fp, or

m N m

€a o LU e, 0 L,U
1-epg & L_lu: -eXpg L_Zu
&§€s08 Loy &§€S0@ Loy
which implies that
B0 L B0 L,
es, o L, es,o L,
or
L1/m
S &0
s,, elLwo

If L1 =20 m, then s1c= 4.8 GN/m2
If Lo = 1 km, then soc= 3.9 GN/m2

Thus
a.8y" _ 1000
— =——=50
€3.09 20
gives
- 1000 __,gq
log(4.8/ 3.9)

16



