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The neural network (NN) has been widely used as a prom-
ising technique in fiber optical communication owing to
its powerful learning capabilities. The NN-based equalizer
is qualified to mitigate mixed linear and nonlinear impair-
ments, providing better performance than conventional
algorithms. Many demonstrations employ a traditional
pseudo-random bit sequence (PRBS) as the training and test
data. However, it has been revealed that the NN can learn
the generation rules of the PRBS during training, degrading
the equalization performance. In this work, to address this
problem, we propose a combination strategy to construct a
strong random sequence that will not be learned by the NN
or other advanced algorithms. The simulation and experi-
mental results based on data over an additive white Gaussian
noise channel and a real intensity modulation and direct
detection system validate the effectiveness of the proposed
scheme. ©2020Optical Society of America

https://doi.org/10.1364/OL.393808

The neural network (NN) has become popular and been shown
to be effective in the fields of computer vision and natural
language processing. It has been shown that an NN can fit
and express any function if it has at least one hidden layer and
enough hidden nodes [1]. Additionally, an NN can easily extract
the features of big data and fit and express a complex nonlinear
model. NN is thus widely used in applications of regression,
classification, and decision making. In the case of a problem
that cannot be solved with a simple mathematical model, the
NN provides a more direct way to deal with the problem as a
black box. Owing to its effectiveness, the NN has been widely
investigated in fiber optical communications, and its value in
optical network performance monitoring [2], proactive fault
detection [3], modulation format recognition [4], and channel
equalization [5–14] has been demonstrated.

The NN is applied as a promising equalization tool to com-
pensate transmission impairments, including both linear and
nonlinear distortion, especially in intensity modulation and
direct detection (IMDD) systems. For both a passive optical
network and short-reach optical links, owing to the requirement
of low-cost optical devices, the bandwidth of the channel is
inevitably limited, resulting in severe intersymbol interference.

Moreover, this distortion can mix with other effects, such as
nonlinearities of the optical devices, which further degrades the
signal quality during transmission. In this case, conventional
algorithms perform poorly and do not satisfy the requirements
for equalization. Studies have demonstrated the capability of
the NN in terms of equalization [5–13], with the NN-based
equalizer seemingly outperforming traditional algorithms.

However, in-depth studies on the NN-based equalizer found
that the performance of NN-based equalization may be over-
estimated owing to the use of a pseudo-random bit sequence
(PRBS) [14]. When data of the same PRBS are used to train and
test the NN, the NN will learn and use the generation rules of
the PRBS, resulting in abnormally high performance [14–16].
References [14,15] reported that an NN with one hidden layer
containing at least two nodes can learn PRBS rules. Even though
the training data and test data have different patterns, the NN
learns the generation rules instead of the data patterns, while
the learned rules are not adaptive for other data with different
generation rules or just real-world data. Therefore, once such
different data are used to test the well-trained NN, the perform-
ance will be much worse [16]. The NN misled by the PRBS is
thus not suitable for equalization. Besides, not only for NN,
advanced algorithms such as the Volterra nonlinear equalizer
can also learn the PRBS rule if its second-order size can cover the
generation rule. Thus, effective methods of generating random
data for training are essential. Some works apply more complex
random data generated by the Mersenne twister algorithm to
avoid this problem [16,17], but the data is still probably learned
by a more advanced algorithm. Besides, real random data from
the physical method is also a solution [18]. However, this way is
difficult to conduct.

In this work, we establish a simple combination method of
constructing random data. This method leverages three ran-
dom sequences generated by any independent rules, where one
sequence acts as an index to guide the combination of the other
two sequences. The operation can be repeated time after time,
continuously hiding the data features and eventually obtaining
strong random data that cannot be modeled by an NN or other
advanced equalization algorithms. A cross-test strategy is used
to validate the effectiveness of the training data. Simulation and
experimental results based on signals transmitted over an addi-
tive white Gaussian noise (AWGN) channel and a real IMDD
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Fig. 1. Combination scheme for random sequence construction.

system confirm that the method effectively hides data features
and ensure the correct training.

The proposed combination scheme is shown in Fig. 1. The
method requires three independent pseudo-random sequences,
such as three different PRBS sequences. One of the sequences,
S1, is selected as the index, while the other two sequences, S2

and S3, provide the bit values. Let SC denote the combined
sequence. The method will scan the bit in S1. If the current bit is
zero, then the bit at the head of S2 will be shifted to the tail of SC .
Otherwise, the bit at the head of S3 will be shifted to the tail of
SC . This operation will be conducted repeatedly until the length
of SC reaches the target. Besides, all of S1, S2, and S3 are recycled
during the procedure.

We adopt a PRBS to demonstrate how the proposed scheme
hides the data feature and helps correctly train the NN-based
equalizer. A basic PRBS is generated by linear feedback shift reg-
isters based on corresponding generating polynomials, which is
essentially a simple exclusive-or (XOR) operation. For instance,
the generation rule of PRBS15 can be expressed as

x (n)= x (n − 15)⊕ x (n − 14), (1)

where⊕ is the XOR operation, and x is the bit in the sequence
with the index in parentheses. NN can characterize XOR rela-
tionships easily. Since these bits in a rule are close to each other,
the input data of the NN-based equalizer can easily cover all of
the related bits. Therefore, NN learns the PRBS rule and applies
it in equalization, which brings an unreliable performance.

The combination scheme can complicate the random
sequence to hide its rule. Let the source sequence S1, S2, and S3

be PRBS sequences, then the combined sequence SC is a mixed
PRBS, assuming that SC has a universal generation rule that will
be learned by the NN-based equalizer, which is expressed as

x (n)= f (x (n − t1), x (n − t2), . . . , x (n − tk)). (2)

It is impossible for all the bits to satisfy this rule, since the
bits come from different sequences. However, if the NN-based
equalizer can learn and leverage such a rule, then this rule should
be general enough. Besides, only if the input data is large enough
to cover all the related bits in the rule can an NN learn and model
this rule.

As the bits in S2 and S3 are irrelevant, all the bits in the rule
should originate from the same sequence, S2 or S3. Hence,
the bits of index sequence S1 are equal in the corresponding
position, as

x1(n)= x1(n − t1)= x1(n − t2)= · · · = x1(n − tk)= v,

v = 0, 1, (3)

where x1 is the bit of S1. If the rule of Eq. (2) originates from
S2, then v = 0, otherwise v = 1. Without loss of generality, let
v = 0, then these bits form a subsequence with all zero. As we
mentioned above, if the rule can be learned by NN, then the rule
should be general enough.

If the span of the rule is within the length of S1, then S1
should contain a large number of such all-zero subsequences,
while the bits in S1 have the same distance of index. To make
sure that the rule of Eq. (2) exists, the subsequences should
appear periodically. However, S1 is also a random sequence, so
S1 will not exhibit such periodic rule.

Therefore, if such a rule exists, the span must exceed the
length of S1. Since the source sequences are recycled during the
combination, the index sequence S1 can also be used repeatedly.
It can form a cyclic index sequence S∗1 . Let d denote the length of
S1, then any two bits in S∗1 with a distance of d should be equal.
Meanwhile, there should be a fixed amount of 0 and 1 between
them. Hence, the corresponding bits in Sc should have a certain
distance in its original sequence. A rule covering such bits with
large distances may exist. In this case, the span of a rule must be
greater than the length d .

In general, we can draw a conclusion that there is no short rule
in the combined sequence Sc . If a rule exists, then the span of the
bits in the rule should exceed the length of the index sequence.
For a PRBS-N, its length is 2N , which means even though the
mixed PRBS has a learnable generation rule, the span of the rule
will be exactly greater than 2N . The length can easily exceed the
size of the input for an NN-based equalizer. By the way, NN
cannot learn the generation rule of the data and can be correctly
well-trained.

In addition, the proposed scheme can work iteratively. It
can employ the new combined sequence as one of the source
sequences to construct a new sequence. The combined sequence
has no direct correlation with the source sequences, thus they
can work together in a new combination. The way can repeat-
edly increase the complexity of the new sequence. Any given
advanced equalization algorithm as the NN should have a fixed
ability. Therefore, the iteration can finally get a sequence that
can effectively train the algorithm.

For instance, the cycle length of the combined sequence con-
structed by PRBS should be

lc = lcm(l1, lcm(l2, l3)× 2), (4)

where lcm is the least common multiple. l1, l2, l3 are the length
of S1, S2, S3, respectively. Since li = 2mi , if we drop out a bit in
each source sequence, then we can get a much larger lc . Next, we
can apply the new sequence Sc as the index sequence. According
to the analysis above, the potential generation rule in the next
new combined sequence should have a larger span that is greater
than lc . By the way, the sequence can effectively hide the data
feature.

The proposed method is similar to the shuffle algorithm,
but it is simpler to modify a bit sequence, due to it being able to
cooperate with the original generation rule with an overhead of
O(N) complexity.

To validate the proposed scheme, several simulations are
conducted to evaluate and compare the NN behavior on the
mixed PRBS, basic PRBS, and Mersenne twister random data.
The mixed PRBS is constructed with PRBS15, PRBS23, and
PRBS31, where PRBS31 is the index. The Mersenne twister
random data is generated by MATLAB following the Mersenne
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Fig. 2. Sequences of the cross-test method.

Fig. 3. BER performance of the NN on different training and test
data combinations for different SNRs in basic cases. The notation A–B
means training on A and testing on B.

twister rule. It has been proved that a common NN cannot learn
the rule of Mersenne random sequence [17], so we use it to show
a comparison.

In the simulation, a non-return-to-zero (NRZ) signal with
only AWGN is generated as the experimental data to avoid the
channel interference. In that way, the distortion of each bit is
independent and random. We can just evaluate the influence of
data rule detection. An NN with two hidden layers is used for
evaluation, while the layer sizes are 201/128/128/2. The acti-
vation function of the hidden node is ReLU, while the output
vector is activated by Softmax.

We apply a cross-test method to measure the performance
of the NN-based equalizer. This method requires two data
sets with different generation rules, as shown in Fig. 2. One is
divided into the training set and test set, while another is only for
test. The NN-based equalizer will be trained with the training
set and tested with the two test sets. If the NN does not learn the
data rules, then the bit error rate (BER) performances on the two
test sets should be exactly equal.

We first verify this cross-test method with PRBS and
Mersenne twister random data. We measure the perform-
ance of the NN on different training and test data combinations.
Results are shown in Fig. 3, where notation of measurement
data A–B means that the model is trained on A and tested on
B. All of the training and test data for the same case belong to
different data patterns, though some of the cases have the same
generation rule as “A–A”. The “Random” denotes the signal
based on Mersenne twister random data. The hard-decision
curve represents the theoretically optimal performance of such
an AWGN channel with a real random signal, which is leveraged
as a benchmark.

The results show that, when the training data are Mersenne
twister random data, all test BER performance curves are close
to the theoretical curve, which confirms that such Mersenne
twister random data will not be characterized by the evaluated
NN model. However, when the training data are PRBS23, the
test results present different performance behaviors on different
test data. In the case PRBS23–PRBS23, the test data have the

Fig. 4. BER performance of the NN on a mixed PRBS and
Mersenne twister random data versus the SNR. The notation A–B
means training on A and testing on B.

same generation rule as the training data, while the test BER per-
formance is much better than the hard-decision performance.
This abnormally high performance does not exist in the case
of PRBS23–PRBS15, because the test data are generated by a
different rule. The different performances on the same training
data show that the NN learns many generation rules. In brief,
internal data features of the signal are learned by the NN, which
misleads the equalization.

Figure 4 shows the results of the cross test with the mixed
PRBS and Mersenne twister random data. Using mixed PRBS
or random data for NN training can get the same BER perform-
ance on different test data, while the performance is equal to the
theoretical performance. This means that no internal rules of
data are characterized by the NN.

We also validate the training effectiveness of NN with various
scales under the combined sequence. The NN still has two
hidden layers. We set a size coefficient of s z to quantify the scale.
Each hidden layer contains 4s z nodes, while the input size is
2s z− 1. Other configurations are the same as above. The data
are still the combination of the mixed PRBS and Mersenne
twister random data with an SNR of 4 dB. The results are shown
in Fig. 5. The BER performances on different test data are still
approximately equal, indicating no detection of the data rules.
As the scale exponentially increases, the BER degrades slightly
because of unpreventable overfitting induced by the complex
structure. It is because the complex model overfits the data pat-
terns instead of learning the data generation rules unless the test
performance of different combinations should be significantly
different.

The simulation results confirmed that the proposed scheme
can effectively complicate and hide the data feature of the PRBS
sequence. For an equalizer based on a simple NN model, the
mixed PRBS can be a promising training data as the Mersenne

Fig. 5. BER performance of the NN on a mixed PRBS and
Mersenne twister random data verses the NN scale, where
k = log2(s z).
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Fig. 6. Experimental setup of a 25 Gbaud PAM4 IMDD system
based on 10 G-class optical devices.

twister random data. Once an advanced equalization algorithm
can learn the rule of the mixed PRBS and Mersenne twister. The
proposed scheme can also apply the Mersenne twister random
data as the source sequence to construct a more complicated
random sequence. The cross-test method can be used to validate
if the generated data is learned by the advanced equalization
algorithm.

Furthermore, we test the combination random data on a
real IMDD system, as shown in Fig. 6. A Keysight M8195A
arbitrary waveform generator (AWG) with a sampling rate of
64 GSa/s provides a 25 GBaud/s four-level pulse amplitude
modulation (PAM4) random sequence generated by Matlab
with the Mersenne twister algorithm. The PAM4 signal is
modulated on a 10 G-class O-band directly modulated laser.
After 20 km standard single-mode fiber (SSMF) transmission,
a variable optical attenuator (VOA) is applied for measurement
of the receiver sensitivity. The optical signal is then detected
by a 20 G-class avalanche photodiode (APD). The detected
signal is finally sampled by a LeCroy digital sample oscilloscope
(DSO) with a bandwidth of 45 GHz and a sampling rate of 120
GSa/s. The mixed PRBS and Mersenne twister random data are
modulated as the PAM4 signal and transmitted over the system,
respectively.

In the experiment, the NN should equalize the PAM4 sig-
nal instead of the binary bit; hence, the output size of the NN
is four, corresponding to the four levels of the PAM4 signal.
Additionally, the sizes of the input layer and two hidden layers
are 201, 128, and 128, respectively. The lengths of the training
set and the test set are both 100,000. The results are shown
in Fig. 7, where the launching power into the fiber is 8 dBm.
The experimental results on real transmission data show that
there are no differences in the BER performance among the
data combinations, even with the bandwidth limitation and
nonlinear effect. Hence, there is no detection of the generation
rule in the training. This confirms that our proposed method
effectively hides the data feature for NN training, which can
be leveraged in research on the NN-based equalizer and other
advanced algorithms.

In this work, we proposed a combination scheme of con-
structing random data to hide simple internal data features.
The combined sequence will not expose features to mislead
the NN-based equalizer during training. Although we cannot
promise that the internal features of the combined random data
cannot be learned by any algorithms, our proposed method
can be used repeatedly time after time. After each iteration,
the method will hide the data feature in a higher dimension.
The capability of a certain algorithm is fixed and limited, and
the exponentially increasing span of the dependent bits will
thus exceed the algorithm capability with enough iterations.
Therefore, once we detect internal data feature learning of the
NN through the cross-test method, the combination scheme
can be used to further hide the internal features. By repeating
these operations, we finally obtain random data that will not be
learned by the equalization algorithm. We hope the proposed

Fig. 7. BER performance of the NN on a mixed PRBS and
Mersenne twister random data for a 25 Gbaud PAM4 IMDD system.
The notation A–B means training on A and testing on B.

method will be suitable for the generation and validation of
training data for an NN-based equalizer and other advanced
equalizers with learning ability.
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