
Robotron: Top-down Network Management at
Facebook Scale

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng

Facebook, Inc.

robotron@fb.com

ABSTRACT
Network management facilitates a healthy and sustain-
able network. However, its practice is not well under-
stood outside the network engineering community. In
this paper, we present Robotron, a system for manag-
ing a massive production network in a top-down fash-
ion. The system’s goal is to reduce effort and errors on
management tasks by minimizing direct human inter-
action with network devices. Engineers use Robotron
to express high-level design intent, which is translated
into low-level device configurations and deployed safely.
Robotron also monitors devices’ operational state to en-
sure it does not deviate from the desired state. Since
2008, Robotron has been used to manage tens of thou-
sands of network devices connecting hundreds of thou-
sands of servers globally at Facebook.

CCS Concepts
•Networks → Network management;

Keywords
Robotron, Network Management, Facebook

1. INTRODUCTION

“Lots of folks confuse bad management
with destiny.” — Kin Hubbard

Managing a large, dynamic, and heavily utilized net-
work is challenging. Everyday, network engineers per-
form numerous diverse tasks such as circuit turn-up and

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934874

migration, device provisioning, OS upgrade, access con-
trol list modification, tuning of protocol behavior, and
monitoring of network events and statistics.

Network engineers highly value judicious network man-
agement for several reasons. First, a properly config-
ured network is a prerequisite to higher-level network
functions. For example, routing protocols may not func-
tion correctly if an underlying circuit is not provisioned
as planned. Second, since network management tasks
naturally involves human interactions, they are highly
risky and can cause high-profile incidents [3, 8, 9]. Fi-
nally, agile network management enables the network
to evolve quickly, e.g., adding new devices or upgrading
capacity, to support fast changing application needs.

However, the field of network management is tradi-
tionally considered too“operational”and therefore lacks
published principles. Many challenges and lessons learned
circulate only in the network engineering community. In
practice, the time an engineer spends on the manage-
ment plane can be much longer than the control and
data planes. We outline challenges that we face in the
management plane.

Distributed Configurations: Translating high-level
intent (e.g., provisioning decisions) into distributed low-
level device configurations (configs) is difficult and error-
prone due to the multitude of heterogeneous configura-
tion options involved. For instance, migrating a circuit
between routers can involve configuration changes in IP
addressing, BGP sessions, interfaces, as well as “drain”
and “undrain” procedures to avoid the interruption of
production traffic.

Multiple domains: Large Internet-facing services,
such as Facebook, are often hosted on a “networks of
networks,” where each sub-network has unique char-
acteristics. For example, our network consists of edge
points of presence (POPs), the backbone, and data cen-
ters (DCs). The devices, topology, and management
tasks vary per sub-network. Yet, all of them must be
configured correctly in order for the entire network to
function.

Versioning: Unlike end-hosts which are statically
connected to the top-of-rack switches, network topology

426

http://dx.doi.org/10.1145/2934872.2934874


Goals Approaches (Section mentioned)

Configuration-as-code
Minimal human input to create/update relevant objects in order to model desired network design;
simple logic available in config templates using a template language; both config templates and
generated configs are source controlled and rigorously reviewed (5.1, 5.2)

Validation
Network design constraints and rules embedded in FBNet models and network design tools (4, 5.1);
assisted massive config deployment with human verification (5.3); ensure continuous network health
through monitoring dynamic state and static config against desired network design (4, 5.4)

Extensibility
Vendor-neutral models are combined with objects expressing different generations of network archi-
tecture and vendor-specific config templates to generate configs (4, 5.1, 5.2)

Table 1: High-level summary of Robotron’s design goals.

and routing design can change significantly over time in
different parts of the network, requiring engineers to
simultaneously manage multiple “versions” of networks
for long periods of time. For example, Google’s data
center networks have undergone five major upgrades in
a 10-year span, each with different topologies, devices,
link speeds, and configs [32].

Dependency: Configuring network devices involves
handling tightly coupled parameters. For example, to
configure an iBGP full-mesh among all routers within a
single Autonomous System (AS), proper configuration
must exist in both peers of every iBGP session. Adding
a new router into the AS means changing the configs on
all other routers. Such dependencies are laborious for
network engineers to handle.

Vendor differences: Large production networks of-
ten consist of devices from different vendors. Despite ef-
forts to unify configuration options among multiple ven-
dors [6,19], often the only way to take full advantage of
device capabilities is through vendor-specific command-
line interfaces, configs, or APIs. Configuration options,
protocol implementations, and monitoring capabilities
can vary across vendor hardware platforms and OS ver-
sions, making them extremely difficult to maintain.

To address these challenges, we designed and imple-
mented Robotron, a system for managing large and dy-
namic production networks. Robotron was designed to
achieve the following goals, as summarized in Table 1:

Configuration-as-code: The best way to stream-
line network management tasks is to minimize human
interaction as well as the number of workflows. Hence,
we codify much of the logic to ensure dependencies are
followed and the outcome (device configs) is determin-
istic, reproducible, and consistent.

Validation: To avoid config errors, we built different
levels of validation into Robotron. For example, point-
to-point IP addresses of a circuit are rejected if they
belong to different subnets. We include human verifi-
cation, in some cases, as the last line of defense. For
instance, before committing a new config to a device,
the user is presented with a diff between the new and
existing config to verify all changes. After committing,
we also employ continuous monitoring to closely track
the actual network state.

Extensibility: Due to the tremendous growth of our

scaling needs, our network has constantly evolved, with
new device models, circuit types, DC and POP sites,
network topologies, etc. We strive for generic system
design and implementation, while allowing network en-
gineers to extend functionality with templates, tool con-
figurations, and code changes. This allows us to focus
on improving the system itself instead of being bogged
down by network changes.

With Robotron, we are able to minimize manual lo-
gin to any network device for management tasks. Since
2008, Robotron has been supporting Facebook’s pro-
duction network, with tens of thousands of network de-
vices connecting hundreds of thousands of servers glob-
ally. Despite the multitude of deployed architectures
throughout the years, Robotron’s core architecture has
remained stable and robust.

In this paper, we make the following contributions:
(1) We describe the challenges of large-scale network
management and give examples throughout the paper
in the hope of motivating future research in this field.
(2) We describe the design and implementation of Robotron,
a system that employs a model-driven, top-down ap-
proach to generate and deploy configs for tens of thou-
sands of heterogeneous network devices in a large pro-
duction network. In addition, Robotron monitors de-
vice configs and operational states to ensure the net-
work conforms to the model.
(3) We report Robotron’s usage statistics, which pro-
vide insights into real-world network management tasks.
We also share our experiences using Robotron to man-
age our network and discuss open issues.

2. THE NETWORK AND USE CASES
The term “network management” may involve many

different tasks depending on the situation. In this pa-
per, network management means keeping track of the
state of network components (e.g., switches, IPs, cir-
cuits) during their life cycle. 1Similar to many other
large Internet businesses, Facebook’s network is a “net-

1One framework for describing the network manage-
ment space is Fault, Configuration, Accounting, Per-
formance, and Security (FCAPS). [5] By this definition,
Robotron covers configuration, as well as some account-
ing management, with an emphasis on device and over-
all topology modeling.

427



POPsInternet Backbone Data CentersUsers

Figure 1: The overview of Facebook’s network.

20G	

Internet	

PSWa	 PSWb	 PSWc	 PSWd	

PR1	

BB1	 BB2	

Agg	

Core	

To	TORs	and	servers	

PR2	

Figure 2: Example 4-post POP cluster. The dotted
lines represent eBGP sessions [28].

work of networks” containing multiple domains: many
edge point-of-presence (POP) clusters, a global back-
bone, and several large data centers (DC). The network
carries both traffic to and from external users as well as
internal-only traffic. Let us navigate the network (Fig-
ure 1) from the perspective of an external user as that
will highlight each of the major domains of the network
and the common management tasks.

2.1 Point-of-Presence
The production network managed by Robotron is re-

sponsible for fast and reliable delivery of large volume
of content to our users. When a user visits our ser-
vice, the request travels to one of our globally-dispersed
edge POPs via the Internet. Our POPs typically con-
tain a multi-tiered network as shown in Figure 2. The
first tier is Peering Routers (PRs), which connect to
Internet Service Providers (ISPs) via peering and tran-
sit links and to our backbone via Backbone Routers
(BBs). From the PRs, connectivity to the POP servers
is provided by a switching fabric that consists aggrega-
tion switches (PSWs) and top-of-rack switches (TORs).
Applications running on POP servers include load bal-
ancers and caches. These POPs allow content to be
stored closer to the end user, thereby reducing latency.
Any request unable to be served by POP servers tra-
verses our backbone network to one of the DCs.

Common POP management tasks include building a
new POP, provisioning new peering or transit circuits,
adjusting link capacity, and changing BGP configura-

FBNet DB

Network	
Design

Config
Generation Deployment Monitoring

Figure 3: Overview of Robotron system.

tions (configs). Among these tasks, building a new POP
is the most comprehensive and will be used as the run-
ning example in Section 4 and 5.

2.2 Data Center
Each DC comprises a large number of machines host-

ing web servers, caches, databases, and backend ser-
vices. These systems collectively generate a response to
the request, which is routed back to the user through
the ingress POP. Each DC has several clusters, whose
external connectivity is provided by data center routers
(DRs). Currently, there are several versions of clusters
in production. These clusters have highly standardized
topologies with tightly-coupled device configs. The con-
figs for network devices in DCs change infrequently com-
pared to those in the POPs or in the backbone.

Cluster provisioning jobs, which involve initial de-
vice configuration, cabling assignment, IP allocation,
etc, and cluster capacity upgrade are among the most
common management tasks happening in DCs.

2.3 Backbone
The backbone network provides transport among POPs

and DCs via optical transport links. Each backbone lo-
cation consists of several BBs. From a protocol perspec-
tive, both MPLS and BGP are used. We use PRs and
DRs as edge nodes to set up label-switched paths via
BBs. MPLS traffic engineering (MPLS-TE) tunnels are
deployed for the purposes of traffic management. In ad-
dition, internal BGP (iBGP) sessions are used between
PRs and DRs to exchange routing information.

It is common to augment long-haul capacity across
the backbone network with circuit additions. This re-
quires the generation and provisioning of IP interface
configuration, including point-to-point addresses and bun-
dle membership. Also, due to the mesh-like nature of
both MPLS-TE tunnels and iBGP between DRs and
PRs, the deployment/removal of a new node or modifi-
cation to an existing node requires configuration changes
to a large number of nodes within the topology.

3. ROBOTRON OVERVIEW
As with many companies, we heavily relied on manual

configuration and ad-hoc scripts to manage our network
in its early days. Since 2008, we have built FBNet, an
object store to model high-level operator intent, from
which low-level vendor-specific configs are generated,
deployed, and monitored. We refer to this process as

428



“top-down” network management. Over the years, FB-
Net and the suite of network management software we
built around it have evolved to support an increasing
number of network devices and network architectures,
becoming what is known today as Robotron.

Figure 3 shows an overview of Robotron. Using FB-
Net as the foundation, Robotron covers multiple stages
of the network management life cycle: network design,
config generation, deployment, and monitoring.

FBNet: FBNet is the central repository for informa-
tion, implemented as an object store, where each net-
work component is modeled as an object. Object data
and associations are represented by attributes. For ex-
ample, a point-to-point circuit is associated with two
interfaces. The circuit and interfaces are all objects
connected via attributes of the circuit object. FBNet
serves as the single source of truth for component state,
used in the life cycle stages described below.

Network Design: The first stage of the manage-
ment life cycle is translating the high-level network de-
sign from engineers into changes to FBNet objects. For
example, when designing a cluster, an engineer must
provide high-level topology information, e.g., number
of racks per cluster, number of uplinks per top-of-rack
switch, etc. Robotron realizes the design in FBNet by
creating top-of-rack switch, circuit, interface, and IP
address objects for the cluster.

Config Generation: After FBNet objects are popu-
lated, the config generation stage builds vendor-specific
device configs based on object states. Config genera-
tion is highly vendor- and model-dependent. A set of
template configs, which are extended as new types of
devices are put into production, enables FBNet to pro-
vide the object states necessary for each build.

Deployment: Once device configs are generated, the
next stage is to deploy them to network devices. Correct
and safe multi-device deployment can be challenging.
Many design changes affect multiple heterogeneous de-
vices. To reduce the risk of severe network disruptions,
changes are deployed in small phases before reaching all
devices.

Monitoring: When a network component is in pro-
duction, it must be continuously monitored to ensure
no deviation from its desired state. This is a critical
part of auditing and troubleshooting an active network.
For example, all production circuits are monitored to
ensure they are up and passing traffic.

4. FBNET: MODELING THE NETWORK
FBNet is the vendor-agnostic, network-wide abstrac-

tion layer that models and stores various network device
attributes as well as network-level attributes and topol-
ogy descriptions, e.g., routers, switches, optical devices,
protocol parameters, topologies, etc. We empirically
approached the design of FBNet data models, influ-
enced by our network architecture, network manage-
ment tasks, and operational events. Our design goals

PR1	PSWa	

10G	

10G	et1/1	

et1/2	

et2/1	

et3/1	

ae0	 ae1	
2001::1	 2001::2	

	
eBGP	session																	Linecard												Circuit	

Figure 4: PSWa-PR1 portmap.

are two-fold. First, the data models should be simple
and comprehensive in order to capture common network
properties across diverse device vendors, hardware plat-
forms, circuit providers, etc. Second, the data models
should be easy to extend and maintain over time based
on management software needs.

In addition to the data models, FBNet provides APIs
that enable any application to query data and safely
make changes. FBNet’s data store and APIs are ar-
chitected to be reliable, highly available, and scalable
to high read rates. We describe the details of FBNet
data models, APIs, and architecture in the rest of the
section.

4.1 Data Model

4.1.1 Object, Value, and Relationship
A network in FBNet has physical (e.g., network de-

vices, linecards, physical interfaces, circuits) and logical
(e.g., BGP sessions, IP addresses) components. They
have attributes to store component data and associa-
tions between components. FBNet models these com-
ponents, data attributes, and association attributes re-
spectively as typed objects, value fields, and relation-
ship fields. Every object is instantiated based on a data
model that defines the type of the object and its avail-
able fields. Value fields contain object data whereas
relationship fields contain typed references to other ob-
jects.

To illustrate this idea, consider Figure 2 which de-
picts a 4-post POP cluster topology. The cluster has a
group of four PSWs connected to the TORs and servers
[not shown]. Each PSW has one 20G uplink to each of
the two PRs. The PRs connect to the backbone via
the BBs and serve as gateways to the Internet through
peering and transit interconnects. Routing information
is exchanged by external BGP (eBGP) sessions estab-
lished between the PSWs and PRs, and the PRs and
Internet Service Providers.

Figure 4 zooms into the connectivity between PSWa
and PR1. The 20G point-to-point link is a logical bun-
dle formed by grouping two 10G circuits in parallel.
Each circuit has a 10G physical interface on each de-
vice as its endpoints. Each physical interface resides in
a linecard and is named etX/Y, where X indicates the
linecard’s slot number inside the device chassis, and Y is

429



name=PSWa	  

slot=1	  
model=X	  
device=	  

name=et1/1	  
linecard=	  
agg_interface=	  

name=et1/2	  
agg_interface=	  
linecard=	  

  name=ae0	  

prefix=2001::1	  
interface=	  

a_prefix=	  
z_prefix=	  

	  	  name=ae1	  

prefix=2001::2	  
interface=	  

name=et3/1	  
agg_interface=	  
linecard=	  

name=et2/1	  
linecard=	  
agg_interface=	  

name=PR1	  

slot=2	  
model=Y	  
device=	  

slot=3	  
model=Y	  
device=	  

Networkswitch 
Linecard 

PhysicalInterface 

PhysicalInterface 

AggregatedInterface AggregatedInterface 

PhysicalInterface 

PhysicalInterface 

V6Prefix 

BgpV6Session 

V6Prefix 

Linecard 

Linecard BackboneRouter 

a_endpoint=	  	  
z_endpoint=	  

Circuit 
 

Circuit 
 a_endpoint=	  	  

z_endpoint=	  

Figure 5: FBNet models for Figure 4.

the port number on the linecard. The two physical in-
terfaces on each device are combined into an aggregated
interface (aeX) running Link Aggregation Control Pro-
tocol (LACP) to load-balance traffic across interfaces
in the group. Each aggregated interface is assigned an
IP from the same /127 subnet. An eBGP session is es-
tablished over the logical bundle to exchange routing
information.

Figure 5 lays out how the connectivity is modeled
in FBNet. The example’s network components (PSWa,
PR1, physical interfaces, aggregated interfaces, linecards,
circuits, IPs, and eBGP sessions) are represented by
typed objects with value and relationship fields. Rela-
tionships are shown as directed edges capturing the as-
sociations between objects (e.g., linecards are installed
in a device chassis, physical interfaces are grouped into
an aggregated interface, an IP address is configured
per aggregated interface, circuits terminate at physi-
cal interfaces, etc). Value fields have basic data types
such as string, integer, etc. Objects can only be as-
sociated with certain object types based on the rela-
tionship field. For example, the PhysicalInterface
model has a string field name and a relationship field
aggregated_interface that captures its many-to-one
association with the AggregatedInterface model.

While this example demonstrates a limited set of the
core models, the actual set is much richer. At the time
of this paper, there were over 250 models in total cover-
ing IP/AS number allocations, optical transport, BGP,
operational events, etc.

4.1.2 Desired versus Derived
FBNet models are partitioned into two distinct groups:

Desired and Derived.
Desired models capture the desired network state,

which is maintained by network engineers with a set
of specialized tools provided by Robotron. To make
changes, engineers modify the data to describe the up-
dated network design instead of directly updating each
device config. The data is used to drive the generation
of device configs. As a result, the integrity and accuracy
of Desired model data is paramount to the correctness
of the generated configs.

Derived models reflect the current operational net-
work state. In contrast to Desired models, data in De-

rived models is populated based on real-time collection
from network devices (Section 5.4). For example, a cir-
cuit object is created if the Link Layer Discovery Proto-
col (LLDP) data from two devices shows that the phys-
ical interfaces connected to both ends are neighbors to
each other. One obvious use case of having the Desired
and Derived data is anomaly detection. Differences be-
tween data in both models could imply expected or un-
expected deviation from planned network design due to
reasons such as unapplied config changes, or unplanned
events such as hardware failures, fiber cuts, or miscon-
figurations.

While designing Desired and Derived models, we fol-
low three main principles: (1) the models only contain
the fields and data needed by the various management
tools; (2) both model groups may contain different at-
tributes but should be as similar as possible to allow for
simple comparison (e.g., a PhysicalInterface model
exists in both model groups, but only the Derived ver-
sion has the oper status attribute to indicate the cur-
rent operational state of the interface); (3) duplication
of Desired model fields should be minimized due to the
difficulty of consistently maintaining multiple sources of
truth. For example, a physical interface object can be
associated with a device object indirectly via the device
field of the corresponding linecard object. Adding a de-
vice relationship field to the physical interface object
would require two device fields to remain in sync with
each other.

4.2 APIs

4.2.1 Read APIs
FBNet’s read APIs provide operations to retrieve a

list of objects and their attributes. The APIs have a
standard declaration for each object type and are de-
fined around fields and query as follows:

get<ObjectType>(fields, query)

fields: A list of value fields relative to the object
of the given type. A value field can be local to an ob-
ject or indirectly referenced via one or more relationship
fields. For example, to get the slot and device name of
a linecard object, fields has two attributes, slot and
device.name. In addition, for each relationship field, a

430



reverse connection is made available from the referenced
object 2 for convenient access to related objects. For ex-
ample, a device object has a linecards field created as
a result of the relationship field from the linecard model.
query: Criteria that the returned list of objects must

match. A query is made of expressions. An expression
has the form <field> <op> <rvalue> where field is
the local or indirect value field to compare to, op is the
comparison operator, and rvalue is a list of values to
compare against. Example operators are EQUAL, REG-
EXP, etc. Multiple expressions can be composed using
logical operators to form a large, complex query.

4.2.2 Write APIs
In contrast to per-object-type operations provided

by the read APIs, FBNet’s write APIs provide high-
level operations that add, update, or delete multiple
objects to ensure data integrity (i.e., meets network de-
sign rules). For example, one of the write APIs is de-
signed for portmap manipulation (e.g., used to create
the portmap in Figure 4). The API takes a “change
plan” as the input including an old portmap and a new
portmap, and carries out portmap creation, migration,
update, deletion, etc, accordingly, while enforcing net-
work design rules.

4.3 Architecture and Implementation
We describe the distributed architecture of FBNet

and its API services, our implementation choices, and
how they scale and tolerate failures across multiple data
centers.

4.3.1 Storage Layer
The main pillars of FBNet models are objects and

relationships. This fact lends FBNet’s persistent ob-
ject store to being implemented in MySQL, a relational
database. Each FBNet model is mapped to a database
table where each column corresponds to a field in the
model and each row represents an object. Relationship
fields correspond to foreign keys, establishing the logical
connections between FBNet models.

We use Django [2], an object-relational mapping (ORM)
framework in Python, to translate FBNet models into
table schemas. Figure 6 shows a snippet of FBNet mod-
els. Using an ORM framework enables (1) quick model
changes, (2) the use of object-oriented techniques such
as inheritance, (3) support of custom value fields and
per-field validation, e.g., V6PrefixField.

4.3.2 Service Layer
In order for clients written in any programming lan-

guage to use FBNet APIs, both read and write APIs are
exposed as language-independent Thrift remote proce-
dure calls (RPC) utilizing Django’s ORM API to inter-
act with the database.

2Reverse connections are added in API only, but not in
actual FBNet models.

class PhysicalInterface(Interface):

linecard = models.ForeignKey(Linecard)

agg_interface = models.ForeignKey(

AggregatedInterface)

class V6Prefix(Prefix):

prefix = models.V6PrefixField()

interface = models.ForeignKey(Interface)

class V6PrefixField(CharField):

def get_prep_value(self, value):

# Check if value is a valid IPv6 Address

ip = ipaddr.IPNetwork(value)

if ip.version == 6:

return str(ip)

return ’’

Figure 6: Example FBNet models in Django.

The standard declaration of FBNet’s read API per
object type allows the Thrift API definition to be auto-
generated by introspecting FBNet models. The read
API service translates incoming RPC calls into efficient
ORM calls to query the database, and serializes the re-
sults back to the caller as a list of Thrift objects. When-
ever FBNet models are changed, the service just needs
to be re-packaged and re-deployed to expose the up-
dated APIs.

FBNet’s write API service defines and implements
different APIs for different use cases. To ensure the
atomicity, each write API is wrapped in a single database
transaction, and therefore no partial state is visible to
other applications before the API call completes suc-
cessfully. If an error occurs, all previous operations in
the transaction are rolled back.

4.3.3 Scalability and Availability
Applications perform reads and writes through the

service layer from multiple, geographically-diverse DCs.
We employ standard MySQL replication using one mas-
ter and multiple slaves, one per DC. All writes to the
master database server are replicated asynchronously to
the slave servers with a typical lag of under one second.
Each database server is fronted with multiple write and
read API service replicas deployed locally. While writes
must be forwarded to the write API service in the mas-
ter database region, client read requests can be serviced
locally to reduce latency. Read service replicas are also
deployed for the master database to support clients re-
quiring read-after-write consistency.

FBNet can recover from two common failures.
Database Failures: A database is disabled if it con-

sistently fails health-checks. In addition, a slave is also
disabled when it experiences high replication lag. When
the master goes down, the slave in the nearest data cen-
ter is promoted to master. The new master handles
all reads/writes originally destined for the old master.
When a slave fails, service replicas in the same data
center temporarily redirect their reads to the master
database until the slave recovers.

431



Cluster(
   devices={
      PR: DeviceSpec(
         hardware=“Router_Vendor1”
         num_devices=2)
      PSW: DeviceSpec(
         hardware=“Switch_Vendor2”
         num_devices=4)
   },
   Link_groups=[
      LinkGroup(
         a_device=PR,
         z_device=PSW,
         pifs_per_agg=2,
         ip=V6)
   ]
)

Template for a POP cluster FBNet objects 

BackboneRouters:	2	
NetworkSwitches:	4	
Circuits:	16	
PhysicalInterfaces:	32	
AggregatedInterfaces:	16	
V6Prefixes:	16	
BgpV6Sessions:	8	

Figure 7: Robotron materializes a cluster template into
FBNet objects.

Service Replica Failures: When an API service
replica fails due to process crash or server failure, re-
quests are redirected to any remaining service replicas
in the same data center. If they are also down, re-
quests are rerouted to the nearest live service replicas
in a neighboring data center.

5. MANAGEMENT LIFE CYCLE
Using FBNet as the foundation, Robotron’s manage-

ment life cycle has four stages: network design, config
generation, deployment, and monitoring.

5.1 Network Design
In this stage, Robotron consumes high-level, human-

specified network designs, which are validated against
network design rules, and translates them into Desired
FBNet objects filled with values and relationships.

5.1.1 POPs and DCs
POPs and DCs have standard fat-tree architectures

that change rarely after the initial turn-up. Such a uni-
form architecture lends itself to be captured with topol-
ogy templates. A topology template defines components
that compose a topology: network devices and groups of
links (link group) that connect them. Recall the exam-
ple POP cluster in Figure 2 that contains four PSWs,
each connecting to two PRs. Figure 7 shows the corre-
sponding topology template. It defines (1) the devices’
hardware profiles (e.g., vendor, linecards, interfaces re-
served for each neighboring device), (2) the number of
devices of each type, e.g., two PRs each with hardware
profile Router_Vendor1, (3) how they are connected,
e.g., each (PR, PSW) pair is connected by a link bun-
dle with 2 circuits, and (4) IP addressing scheme.

Given these templated designs, Robotron creates FB-
Net objects accordingly. In this case, Robotron con-
structs 2 BackboneRouter objects and 4 NetworkSwitch
objects, representing the PRs and PSWs, respectively.
In addition, each (PR, PSW) pair has a portmap similar
to Figure 4. In total, 94 objects of various types (e.g.,
Circuit, BgpV6Session) are created in FBNet as seen

in Figure 7. Robotron also establishes the relationships
of each object, e.g., associating physical interfaces with
aggregated interfaces, circuits with physical interfaces,
prefixes with aggregated interfaces, and BGP sessions
with prefixes.

Using topology templates allows us to easily extend
Robotron to support different network architectures.
Over the years we have built hundreds of POP and DC
clusters which have undergone several major architec-
ture changes. These templates are also used by net-
work engineers to try different topology designs such as
adding more devices, device types, and links, forklift-
ing upgrades to newer hardwares or different vendors.
Robotron is able to translate these designs to tens of
thousands of FBNet objects within minutes.

5.1.2 Backbone
In contrast to POP and DC networks, our backbone

network employs a constantly changing asymmetrical
architecture in order to adapt to dynamic capacity needs.
Most design changes result from incrementally adding
and deleting backbone routers, as well as adding, mi-
grating, and deleting circuits between routers to add
more redundancy and capacity. Each month, we per-
form tens of router additions and deletions, and hun-
dreds of circuit additions, migrations and deletions.

Robotron provides device and circuit design tools for
these incremental changes. The tools provide high-level
primitives to users and do complex object validation
and manipulation in the backend. For example, users
can issue the “delete” command with a router name as
parameter, and the device tool automatically handles
deleting the corresponding FBNet router object and
deleting or disassociating its related objects.

A key challenge of supporting incremental changes
is to resolve object dependency. For example, adding
and removing a backbone router requires updating the
iBGP mesh by modifying BGP session objects related
to all other routers on the edge of the backbone; mi-
grating a circuit from one router to another requires
deleting or re-associating existing interface, prefix, and
BGP session on one router and creating new ones on
the other.

Robotron leverages FBNet’s object relationships to
track and resolve object dependency when making de-
sign changes. When updating an object, it checks all
its related objects through relationship fields and up-
dates them accordingly. In the above circuit migration
example, Circuit model has a foreign key to Physi-
calInterface, and the latter has a reverse relationship
to V6Prefix (Figure 5, 6). When a circuit object is
disconnected by removing its association with physical
interfaces, Robotron follows the relationship to delete
the prefix objects associated with the old physical in-
terfaces before clearing the relationship fields.

5.1.3 Design Validation
Network design errors are a major cause of network

432



struct Device {

1: list<AggregatedInterface> aggs,

}

struct AggregatedInterface {

1: string name,

2: i32 number,

3: string v4_prefix,

4: string v6_prefix,

5: list<PhysicalInterface> pifs,

}

struct PhysicalInterface {

1: string name,

}

Figure 8: A snippet of Thrift data schema for config
generation.

outage: one could specify incomplete and incorrect de-
signs like missing or incorrect device and link specifica-
tion in the template, or assigning duplicate endpoints
to a circuit. Robotron takes both automatic and man-
ual validation approaches to prevent errors. First, it
embeds various rules to automatically validate objects
when translating template and tool inputs to FBNet
objects. These rules check object value and relation-
ship fields to ensure data integrity (e.g., a circuit must
be associated to two physical interfaces), and avoid du-
plicate objects. Second, Robotron displays the result-
ing design changes and requires users to visually review
and confirm before committing the change to FBNet.
Third, it requires employee ID and ticket ID to track
design change history. Finally, Robotron logs all design
changes for ease of debugging and error tracking.

5.2 Config Generation
In this stage, Robotron leverages relevant FBNet ob-

jects created in the network design stage to generate
vendor-specific device configs. To address the challenge
that different vendors use different proprietary config-
uration languages, Robotron divides a device configu-
ration into two parts: dynamic, vendor-agnostic data
such as names and IP addresses, and static, vendor-
specific templates with special syntax and keywords.
The former is derived from FBNet objects and stored as
a Thrift [1] object per device according to a pre-defined
schema while the latter is stored as flat files.

Figure 8 and Figure 9 are snippets of the config’s
data schema and templates for two vendors. Figure 8
defines the structured schema for device, aggregated in-
terface, physical interface, and their attributes that will
be used in all config templates. Figure 9 shows the inter-
face config templates for our PSW and PR devices from
two different vendors. Utilizing Django’s template lan-
guage, dynamic variables and control flows are respec-
tively surrounded by {{}} and {%%}, and static content
is left as plain text. Figure 9 shows that the two vendors
use different configuration syntax to group physical in-
terfaces to aggregated interface and assign IPs, yet they
share common variables such as interface names and IP
prefixes, and a common control flow such as they both

{% for agg in device.aggs %}
interface {{agg.name}}
mtu 9192
no switchport
load-interval 30
{% if agg.v4_prefix %}
ip addr {{agg.v4_prefix}}
{% endif %}
{% if agg.v6_prefix %}
ipv6 addr {{agg.v6_prefix}}
{% endif %}
no shutdown

!
{% for pif in agg.pifs %}

interface {{pif.name}}
mtu 9192
load-interval 30
channel-group {{agg.name}}
lacp rate fast
no shutdown

!
{% endfor %}

{% endfor %}

{% for agg in device.aggs %}
replace: {{agg.name}} {
unit 0 {
{% if agg.v4_prefix %}
family inet {
addr {{agg.v4_prefix}};

}
{% endif %}
{% if agg.v6_prefix %}
family inet6 {
addr {{agg.v6_prefix}};

}
{% endif %}

}
}
{% for pif in agg.pifs %}
replace: {{pif.name}} {
gigether-options {
802.3ad {{agg.name}};

}
}
{% endfor %}

{% endfor %}

Figure 9: Interface config templates for PSW (left) and
PR (right) from two vendors.

Vendor	1	 Vendor	2	

Config	Thri0	Schema	

interface	template	

BGP	template	

MPLS	template	…	

interface	template	

BGP	template	

MPLS	template	…	

PR1	 PR2	

PSWa	 PSWb	 PSWc	 PSWd	

FBNet	

PR1	 PSWa	

PSWc	

PR1	config	

PR2	config	

PSWa	config	 PSWb	config	

PSWc	config	 PSWd	config	

PSWb	

PSWd	

PR2	

FBNet	objects	

Thri0	objects	

Vendor-specific	Configs	

Figure 10: Config generation from FBNet objects.

iterate over all aggregated and physical interfaces.
As shown in Figure 10, Robotron generates configu-

ration in a few steps. First, for a given location such
as a POP or DC, Robotron fetches all related objects
from FBNet. Second, for each device, Robotron derives
relevant device-specific data from FBNet objects (e.g.,
data for a device interface depends on the FBNet cir-
cuit object the interface connects to), stores it into a
Thrift object. Finally, Robotron combines the Thrift
object with vendor-specific templates to generate the
config for the device.

Config correctness ensures healthy network operation
and Robotron takes multiple measures to minimize con-
fig errors. First, it stores config data schemas and tem-
plates in Configerator [37], a source control repository,
so that all schema and template changes are peer-reviewed
and unit-tested. Second, it backs up the running con-
figs for all network devices for quick restoration during
catastrophic events. Finally, Robotron monitors run-
ning config changes and fires alerts for changes that de-
viate from Robotron-generated configs (Section 5.4.3).

433



5.3 Deployment
Once the configs are generated, network engineers de-

ploy them using a CLI. The ultimate goal is agile, scal-
able, and safe deployment while minimizing the risk of
network outages. Robotron supports two different sce-
narios: initial provisioning and incremental updates.

5.3.1 Initial Provisioning
Initial provisioning is used when the devices are in a

clean state, such as turning up all switches in a new clus-
ter. In this case, Robotron erases old configurations (if
they exist) and copies new configurations to the devices,
followed by basic validations (e.g., checking connectiv-
ity). Initial provisioning is relatively simple. Starting
from a clean state also reduces the chance for errors.
One restriction is that network devices must be com-
pletely “drained” of any traffic.

5.3.2 Incremental Updates
In contrast, incremental updates occur when an on-

line device requires incremental changes, such as adding
circuits for additional capacity. In this case, Robotron
usually applies configurations to more than one live de-
vice, with only a portion of the running configuration in
each device affected. To minimize the impact of these
changes, Robotron employs multiple mechanisms:

Dryrun Mode: New configs are compared against
the current running configs, if natively supported by the
devices. Users receive and review a diff listing all up-
dated lines from the new configurations for unexpected
changes. Dryrun can also detect most errors from in-
valid configurations and vendor bugs. For devices that
do not support native dryrun, a diff will still be gener-
ated for review by comparing the running configs before
and after deployment.

Atomic Mode: Engineers often need to deploy new
configs to multiple devices (e.g., iBGP mesh updates).
For these operations, configs may need to be committed
to the devices in one atomic transaction for the network
to operate correctly. Robotron allows engineers to spec-
ify whether the deployment should be atomic. During
an atomic update, if any of the devices experiences er-
rors or cannot finish applying the config within a given
time window, Robotron rollbacks the entire transaction.

Phased Mode: To prevent errors affecting opera-
tions from propagating throughout the network, some
deployments, such as firewall rule changes, require ap-
plying new configurations in multiple phases. In phased
deployments, engineers specify a permutation of per-
centage/region/role of devices to be updated in each
phase. Robotron monitors metrics to track the progress
of each phase and only continues deployment if the pre-
vious phase is successful or engineers will get a notifi-
cation from Robotron upon failures.

Human Confirmation: For certain cases, engineers
can verify expected network behavior within a grace pe-
riod after roll-out. During this timeframe, new configu-

XML SNMP CLIThriftEngines

Job	
Manager

FBNet HBase HiveBackends
Devices

Figure 11: Robotron’s active monitoring pipeline is di-
vided into 3 tiers: job manager, engines, and backends.

rations are temporarily committed to the devices where
engineers can conduct ad-hoc verification. A final con-
firmation must be provided during the grace period oth-
erwise Robotron will rollback the changes.

5.4 Monitoring
To ensure the continuous health of the network, Robotron

employs three main monitoring mechanisms: passive
monitoring, active monitoring, and config monitoring.

5.4.1 Passive Monitoring
Passive monitoring detects operational events such as

running configuration changes, route flaps, and device
reboots. Syslog [23] is our main passive monitoring in-
terface due to wide support by vendors. In our passive
monitoring pipeline, each device is configured to send
syslog messages to a BGP anycast address. Multiple
classifiers collect these messages from the anycast ad-
dress based on a set of regular expression rules main-
tained by network engineers. A syslog message match-
ing a rule triggers the corresponding alerts which are
remediated automatically or manually by engineers.

5.4.2 Active Monitoring
We use active monitoring to collect performance met-

rics (e.g., link, CPU, and memory utilization) and de-
vice states which can be used for cases such as populat-
ing FBNet Derived models. Figure 11 shows the three
major tiers of this pipeline.

Specifically, the Job Manager schedules periodic mon-
itoring jobs based on a list of job specifications, each of
which describes the collection period, the type of data,
the devices, and the storage backends the data should
be sent to. Job manager can also create ad-hoc moni-
toring jobs on-demand. The Engines pull jobs from the
Job Manager directly and poll data from the network
devices accordingly. There are multiple different en-
gines using different polling mechanisms such as SNMP,
XML/RPC, CLI and Thrift. Backends receive the col-
lected data and convert it into a format appropriate for
different storage locations.

5.4.3 Config Monitoring
Robotron leverages both passive and active monitor-

ing to monitor the running configuration of devices.
When a running config is updated, a syslog message
is generated and captured by our passive monitoring

434



 0

 0.2

 0.4

 0.6

 0.8

 1
#
 o

f 
cl

u
st

e
rs

 (
n
o
rm

a
liz

e
d
)

Time

Gen2
Gen1

(n
or
m
al
iz
ed
)

(a) POP

 0

 0.2

 0.4

 0.6

 0.8

 1

#
 o

f 
c
lu

s
te

rs
 (

n
o
rm

a
liz

e
d
)

Time

Gen3V6
Gen3

Gen2V6
Gen2-D
Gen2-C
Gen2-B
Gen2-A

Gen1

(b) DC

Figure 12: Evolution of cluster architectures.

pipeline. The message then triggers an active moni-
toring job which collects the running config, compares
it with Robotron-generated “golden” configuration, and
notifies the engineers of any discrepancy. A config change
is typically detected within minutes. Each collected
running config is also backed up in a revision control
system to track the history of each device config. The
config monitoring framework ensures (1) the continu-
ous conformance of device configs to their golden con-
figs throughout our network and (2) the engineers can
rollback to any prior device config upon disasters.

6. USAGE STATISTICS
Facebook’s network evolves in a hybrid and dynamic

fashion. The backbone network constantly experiences
organic growth and changes in size, circuit speed, and
its mesh topology. DC and POP networks, already hav-
ing multiple architectures, underwent several major up-
grades.

Figure 12 shows the evolution of our POP and DC
architecture over the last two years. Originally, the de-
ployment of Gen1 POP clusters rapidly grew to serve
increasing user traffic. But over a few months, they
were quickly merged into bigger Gen2 POP clusters
to improve efficiency and manageability. Contrasting
with the simplicity of POP architecture, our DC clus-
ters went through three architecture generations, each
with multiple topologies. Additionally, the exhaustion
of the private IPv4 address space required newer clus-
ters to only support IPv6. Multiple generations of DC
architecture had to co-exist because unlike POP clus-
ters, where architectural upgrades were completed in-
place due to space/power limitation in POPs, architec-
tural shifts for DC clusters took place by adding new
and decommissioning previous generations of clusters.
The life cycle of a DC cluster could end due to shifts
in space/power, changes in service requirements, and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30C
D

F
 a

c
ro

s
s
 m

o
d

e
ls

# of related models

Figure 13: The number of related models associated
with each FBNet model.

Time
0

100

200

300

400

500

600

700

#
 o

f 
Li

n
e
s 

P
e
r 

W
e
e
k

Figure 14: Desired model changes.

server hardware refreshes. Robotron ensures our net-
work can evolve and support these architectures with
minimal disruption to traffic.

In the remaining sections, we present usage statis-
tics from various parts of Robotron. Unlike a typi-
cal system evaluation, our focus is not on the system
performance such as task completion time, due to the
highly implementation- and workflow-dependent nature
of these metrics. Instead, we focus on Robotron usage
statistics to realize various network management tasks.

6.1 FBNet Models
FBNet models dependency of network components

by association. For example, Circuit model is asso-
ciated with PhysicalInterface model, and the latter
is associated with AggregatedInterface model (Fig-
ure 5). Figure 13 shows the number of related models
associated with each FBNet model. We can observe
that around 60% of models have more than 5 related
models. Closely modeling these dependencies allows us
to ensure data integrity in FBNet.

We also want to understand the frequency of changes
made by engineers to the FBNet models. Django stores
all models in multiple models.py files, whose histories
are maintained in a version control system. Figure 14
depicts the total number of lines changed per week over
a 3-year period for the Desired model group.

Many people would assume that the models should
become stable after several weeks in production, but our
observations record more than 50 lines changed, on av-
erage, daily. Occasionally, large refactoring efforts can
touch hundreds of lines of code. Unfortunately, it is dif-
ficult to classify each change programmatically. Based
on our discussion with network engineers as well as man-

435



 0

 0.25

 0.5

 0.75

 1

1 10 100 1,000 10,000

C
D

F 
ac

ro
ss

 d
es

ig
n 

ch
an

ge
s

# of FBNet objects

All
Interface

Circuit
v6 Prefix
v4 Prefix

Device

(a) POP and DC

 0

 0.25

 0.5

 0.75

 1

1 10 100 1,000 10,000

C
D

F 
ac

ro
ss

 d
es

ig
n 

ch
an

ge
s

# of FBNet objects

All
Interface

Circuit
v6 Prefix
v4 Prefix

Device

(b) Backbone

Figure 15: Number of changed FBNet objects across
design changes.

ually analyzing some examples, we found that models
change for several reasons:

New Component Types: This is the most obvi-
ous reason for changes. New components result in cre-
ation of new models. Moreover, a component defined in
FBNet does not necessarily correspond to the physical
component. For example, we created the BGPV4Session
model to capture BGP sessions during the transition
from Gen1 (L2) to Gen2 (L3 BGP) DC clusters.

New Attributes: FBNet models are not, at incep-
tion, all-inclusive. They only capture the attributes en-
gineers value or require at that moment. As a result,
new attributes are constantly added to existing mod-
els as needed. In addition, the attributes may or may
not correspond to a direct configuration/command. For
example, the drain_state attribute, a purely “opera-
tional state”, is added to backbone routers to denote
whether the router is serving production traffic.

Logic Changes: Some attributes are not directly
stored in FBNet. Instead, they are generated system-
atically on the fly. The derivation logic may change as
our understanding of the use cases matures. For exam-
ple, a router has an attribute asset_url which points
to a web page showing the device’s asset management
details. The logic that generates this URL evolves over
time along with our asset management system.

6.2 Design Change
During network design stage, engineers perform var-

ious design changes. A design change is an atomic op-
eration that stores a human-specified change to FBNet.
It can be as simple as migrating a single circuit or as
complex as building an entire cluster. Robotron takes
minimum human specification as input and automati-
cally handles the creation, modification, and deletion of
FBNet objects for each design change.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

C
D

F
 #

 o
f 
s
a
m

p
le

s

# of updated lines (10
3
)

Backbone Devices (24993 samples)
POP/DC Devices (6903 samples)

Figure 16: Weekly configuration changes during a 3-
month period. Each sample represents one device in a
particular week.

Figure 15 compares the number of changed FBNet
objects, i.e., those that are created, modified, and deleted
across all design changes over one year. First, a design
change usually has high fan-out, changing from a few
objects to 10,000 objects. Second, designs in POP and
DC change more objects than in backbone, for exam-
ple, the median number of all changed objects is 120
for POP and DC networks in Figure 15(a) and is 20 for
backbone network in Figure 15(b). This is because the
former is usually one-time building of an entire cluster
and the latter is mostly incremental and partial device
and circuit changes. Third, the figure also breaks down
the result into different object types, among which in-
terface objects are changed most frequently, followed by
circuit, v6 prefix, v4 prefix, and device objects. Note
that v6 prefix is changed more than v4 prefix as we
move toward v6-only clusters.

6.3 Configuration Change
Figure 16 shows the weekly configuration changes dur-

ing a 3-month period. Each sample represents total up-
dated config lines (changed/added/removed, excluding
comments) on a device in a particular week. We count
PRs and DRs as backbone devices since they are usu-
ally updated along with BBs, unlike POP/DC devices.
For example, 90% of backbone device samples have less
than 500 updated lines per week, while only 50% of
POP/DC samples are of the same size.

Beyond weekly aggregated metrics shown in Figure 16,
we also observe that while changes are smaller on back-
bone devices (157.38 lines updated per change on av-
erage versus 738.09 on POP/DC devices), they have
a greater number applied (12.46 changes per week on
average versus 2.53 on POP/DC devices). This is con-
sistent with Section 5.1 as we update backbone devices
incrementally, while our network devices in POPs and
DCs are usually configured from a clean state. Unlike
POP/DC devices, operating backbone devices requires
continuous live re-configurations, which benefit greatly
from Robotron’s config generation and deployment.

436



Types # of events Percentage

SNMP (active) 121.25M 50.94%
CLI (active) 26.78M 11.25%
RPC/XML (active) 11.59M 4.87%
Thrift (active) 29.07M 12.21%
Syslog (passive) 49.34M 20.73%

Total 238.03M 100%

Table 2: Monitoring events in a 24-hour period.

6.4 Monitoring Usage
Table 2 quantifies monitoring events triggered in a

24-hour period. We observe that while the majority of
these events use industry standards like SNMP and Sys-
log, we still rely on other non-standard approaches like
CLI to collect data. This is mainly due to shortcomings
of standard mechanisms, or lack of better vendor sup-
port. For example, for some vendors, the operational
status of the physical links within an aggregated inter-
face can only be collected by CLI commands. Note that
the active monitoring event rate is neither limited by the
processing complexity nor the quantity of monitoring
jobs. In our system, the event rate is limited by network
device capabilities such as CPU and/or memory and the
underlying vendor implementation. For example, some
monitoring jobs can take more than ten seconds to fin-
ish, and some jobs such as getting all physical interfaces
information significantly increase the CPU load of the
networking devices. These limitations restrict our mon-
itoring granularity.

Table 3 breaks down the types of syslog messages in
a 24-hour period. We observe that the messages are
very noisy, with more than 95% of them being ignored
by the engineers. Among the 5% considered valuable,
most are warning messages incapable of causing any
major problems.

7. ROBOTRON EVOLUTION
Robotron’s design has evolved significantly since 2008.

Perhaps counter-intuitively, Robotron did not start out
as a top-down solution. Its initial focus was on gaining
visibility into the health of the network through active
and passive monitoring systems (Section 5.4). FBNet
was created to track basic information about network
devices such as loopback IPs and store raw data pe-
riodically discovered from network devices. However,
per-device data was too low-level, vendor-specific, and
sometimes requires piecing multiple data together to
construct meaningful information, making it extremely
difficult to consume. As a result, basic Derived models
(Section 4.1.2) were created in FBNet to store a normal-
ized, vendor-agnostic view of the actual network state
constructed from the raw data. Ad-hoc audits could be
easily written against Derived models to look for design
violations, misconfigurations, hardware failures, etc.

With basic monitoring in place, we started working
on the other stages of the network management life

cycle. There were two main challenges based on user
feedbacks. First, deployment of config updates (e.g.,
changes to routing or security policies) to a large num-
ber of devices was still manual, requiring logging into
each device and copying and pasting configs. To ad-
dress this, the deployment solution (Section 5.3) was
developed to enable scalable and safe config rollout.

Second, many backbone circuits needed to be turned
up to meet the growing inter-DC traffic demand. How-
ever, provisioning a circuit was a time-consuming and
error-prone process, involving manually finding unused
point-to-point IPs (through pinging IPs not in Derived
models) and configuring them on both circuit endpoints.
Not only were we unable to grow the network capacity
fast enough, many circuits were misconfigured with con-
flicting IPs. To automate such design changes, Desired
models were introduced to FBNet, from which IPs and
circuits were allocated using design tools based on pre-
defined rules, and relevant config snippets were gener-
ated for deployment. Over time the suite of design tools
were developed to cover different use cases (Section 5.1),
and more templates were added for different vendors to
generate vendor-specific device configs (Section 5.2).

8. EXPERIENCE AND FUTURE WORK
In this section, we share example issues that arise

using Robotron and lessons learned that lead to open
research problems or can inform the design of future
network management systems.

Complexity of Modeling: A user-impacting event
occurred when a new BGP session was provisioned with
an external ISP requiring a custom import policy con-
taining cherry-picked prefixes. This artificially limits
the session to only serve traffic destined to users behind
those prefixes. While the feature was still under de-
velopment, an engineer used Robotron to turn up the
session, instantly saturating the egress link. The is-
sue was discovered, via monitoring, by our operations
team who quickly mitigated the issue. While similar
outages could have been prevented by quickly incorpo-
rating the latest design requirements into Robotron, a
significant portion of development time was spent on de-
signing new or correcting existing FBNet models to cap-
ture new requirements. Designing network-wide mod-
els that are rich enough to capture the slew of low-level
configuration parameters and ensure cross-device con-
fig integrity would allow new designs be implemented
quickly in Robotron with little to no model changes.

Stale Configs: After network design changes are
made, Robotron currently relies on network engineers
to trigger config generation and deployment since cer-
tain design changes (e.g., topology changes) depend on
changes in the underlying physical network (e.g., re-
cabling). The time gap between design changes, config
generation, and config roll-out may lead to accidental
deployment of stale configs. For example, the DC clus-
ter switch configs use rack profiles from FBNet to derive

437



Urgency # of events Percentage # of rules Examples

CRITICAL 2 <0.01% 13 Critical Power/Temperature Alarm, Device Reboot, SSL VPN Alarm
MAJOR 1.35K <0.01% 214 High Temperature Alarm, TCAM Errors, Linecard Removed
MINOR 32K 0.06% 310 TCAM Exhausted, Possible Bad FPC, IP conflict
WARNING 1.8M 3.65% 103 SSL connection limit, Syslog cleared by user, Interface link state down
NOTICE 6.68K 0.01% 79 DHCP Snooping Deny, MAC Conflict, Cannot find NTP server
IGNORED 47.5M 96.27% 0 LSP change, User authentication

Table 3: Syslog messages of various urgency levels collected in a 24-hour period. A “rule” refers to a regex rule in
Section 5.4.3.

the number of downlink interfaces allocated per rack. In
one instance, Engineer A wanted to add a new rack to a
cluster. He updated the rack profile and generated con-
figs for the cluster switches, but did not immediately
deploy them. A few days later, Engineer B updated
the rack profile, which invalidated A’s design change,
but did not re-generate new configs accordingly. One
week later, Engineer A, unaware of the design change
Engineer B made, pushed the stale configs to the clus-
ter switches, dropping connectivity to a few racks in
the cluster. While this particular issue could have been
avoided if network design, config generation and de-
ployment were tightly coupled, the real challenge occurs
when design changes are made closely in time. How to
serialize concurrent design changes, resolve design con-
flicts, and leverage the Derived network state to ensure
change safety remains an open problem. Statesman [33]
provides some novel ideas on conficts resolution. How-
ever, at Facebook’s scale, handling multiple writers with
a lock-based mechanism can be challenging.

Automation Fallbacks: Network engineers occa-
sionally bypass Robotron to manually configure devices.
This is due to Robotron bugs, unfamiliarity with Robotron,
or the urgent need to make changes unsupported by
Robotron. Manual changes often lead to misconfig-
uration, resulting in issues such as idle circuits, sub-
optimal routing, and unexpected outages. Ideally, an
automated network management system like Robotron
should block manual changes directly to the network
devices and require all config changes be made through
it. However, our operational experiences show that
users, especially in exceptional cases, usually need a re-
liable fallback mechanism to make emergency changes
to the network. Instead of blocking manual changes,
Robotron curtails them with config monitoring (Sec-
tion 5.4.3). Another possible solution is to restore de-
vice running configs to Robotron-generated configs pe-
riodically, while giving users a window for these emer-
gency operations.

9. RELATED WORKS
Many prior research focus on understanding network

management challenges, as well as reverse-engineering
and validating network designs through bottom-up static
configuration analysis in two classes of networks: provider
networks [15,20,25,29,36] and enterprise networks [13,
14, 16, 26, 30]. In addition, recent work [21, 22] propose
general methods to analyze and troubleshoot configu-

rations. In contrast, Robotron employs a top-down ap-
proach, which is continuously refined through opera-
tional experience of our network engineers, to manage
a multi-domain network consisting of a backbone, mul-
tiple DC and POP networks.

The potential of automating or simplifying network
design and configuration through abstraction has in-
spired many works in the research community. A class
of literature [31,34,35,38] applies the“top-down”paradigm
to systematically optimize configuration of specific pro-
tocols or network functions (e.g., VLANs, packet filters,
topologies, and routing) to meet desired objectives such
as performance, reachability, and reliability. Recent
work [27, 33] propose the use of a centralized platform
similar to FBNet for network control and management.
Several industrial solutions [4,7,10,18] adopt template-
based approaches for config generation. Many efforts
aim to develop abstract languages or models to specify
configs in a vendor-neutral fashion [6,17]. Robotron in-
corporates many of these best practices, but is broader
in scope: in addition to modeling, network design, and
config generation, Robotron includes config deployment
and monitoring, and a focus on scaling each stage of
the network management life cycle. Robotron also ap-
plies best practices in software engineering, including
OO-based network modeling, version control, code re-
view, and deployment automation, to large-scale net-
work management.

Finally, a few studies [12,24] consider simplifying net-
work management through clean-slate designs by rearchi-
tecting the control plane. In contrast, Robotron is ap-
plicable to existing operational networks and clean-slate
designs.

10. CONCLUSION
This paper presents the design, implementation, and

operation experiences of Robotron, the system respon-
sible for managing Facebook’s production network con-
sisting of data centers, a global backbone, and POPs
over the last eight years. Robotron employs a top-down
approach where human intentions are translated into
a set of distributed, heterogeneous configurations. Be-
yond configuration generation, Robotron also deploys
and monitors configurations to ensure the actual state
of the network does not deviate from design. We also
present a significant amount of Robotron’s usage statis-
tics to shed light into the operations of Facebook’s pro-
duction network.

438



Recently, researchers [11] have advocated manage-
ment plane analytics, similar to prior research done for
control and data planes. By sharing our experience with
Robotron, we hope to solicit more research in this field,
and improve the management practice in the network-
ing community.

Acknowledgement
Many people in the Network Platform team at Facebook
have contributed to Robotron over the years. In partic-
ular, we would like to acknowledge Andrew Kryczka,
Paul McCutcheon, and Manoj Lal. We are also in-
debted to Omar Baldonado, Nick Feamster, Mikel Jimenez,
Steve Shaw, Chad Shields, Callahan Warlick, CQ Tang,
Sanjeev Kumar, our shepherd, Katerina Argyraki as
well as the anonymous SIGCOMM reviewers for their
comments and suggestions on earlier drafts.

11. REFERENCES
[1] Apache thrift. http://thrift.apache.org/.
[2] Django. https://www.djangoproject.com/.

[3] Google Compute Engine Incident 15064.
https://status.cloud.google.com/incident/compute/15064.

[4] HPE Network Management (HP OpenView).
http://www8.hp.com/us/en/software-solutions/
network-management/index.html.

[5] ISO/IEC 7498-4: Information processing systems – Open
Systems Interconnection – Basic Reference Model – Part 4:
Management framework.

[6] OpenConfig. http://www.openconfig.net/.
[7] Opsware. http://www.opsware.com/.

[8] Root Cause Analysis for recent Windows Azure Service
Interruption in Western Europe. https://goo.gl/UtrzhL.

[9] Summary of the Amazon EC2 and Amazon RDS Service
Disruption in the US East Region.
https://aws.amazon.com/message/65648/.

[10] Tivoli Netcool Configuration Manager.
http://ibm.com/software/products/en/tivonetcconfmana.

[11] A. Akella and R. Mahajan. A call to arms for management
plane analytics. In Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, HotNets-XIII, 2014.

[12] H. Ballani and P. Francis. Conman: A step towards network
manageability. In Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’07, 2007.

[13] T. Benson, A. Akella, and D. Maltz. Unraveling the
complexity of network management. In Proceedings of the
6th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, 2009.

[14] T. Benson, A. Akella, and D. A. Maltz. Mining policies
from enterprise network configuration. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement
Conference, IMC ’09, 2009.

[15] T. Benson, A. Akella, and A. Shaikh. Demystifying
configuration challenges and trade-offs in network-based
ISP services. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, 2011.

[16] D. Caldwell et al. The cutting edge of ip router
configuration. SIGCOMM Comput. Commun. Rev.,
34(1):21–26, Jan. 2004.

[17] Distributed Management Task Force, Inc.
http://www.dmtf.org.

[18] W. Enck et al. Configuration management at massive scale:
system design and experience. Selected Areas in
Communications, IEEE Journal on, 2009.

[19] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman.
Network Configuration Protocol (NETCONF). RFC 6241
(Proposed Standard), June 2011.

[20] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In Proceedings of
the 2Nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, 2005.

[21] A. Fogel et al. A general approach to network configuration
analysis. In Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’15, 2015.

[22] A. Gember-Jacobson et al. Management plane analytics. In
Proceedings of the 2015 ACM Conference on Internet
Measurement Conference, IMC ’15, 2015.

[23] R. Gerhards. The Syslog Protocol. RFC 5424 (Proposed
Standard), Mar. 2009.

[24] A. Greenberg et al. A clean slate 4d approach to network
control and management. SIGCOMM Comput. Commun.
Rev., 35(5):41–54, Oct. 2005.

[25] Y. Himura and Y. Yasuda. Discovering configuration
templates of virtualized tenant networks in multi-tenancy
datacenters via graph-mining. SIGCOMM Comput.
Commun. Rev., 42(3), June 2012.

[26] H. Kim, T. Benson, A. Akella, and N. Feamster. The
evolution of network configuration: A tale of two campuses.
In Proceedings of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference, IMC ’11, 2011.

[27] T. Koponen et al. Onix: A distributed control platform for
large-scale production networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, 2010.

[28] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for
routing in large-scale data centers. Internet-draft, Internet
Engineering Task Force, Apr. 2016. Work in Progress.

[29] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP misconfiguration. SIGCOMM
Comput. Commun. Rev., 32(4), Aug. 2002.

[30] D. A. Maltz et al. Routing design in operational networks:
A look from the inside. In Proceedings of the 2004
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM
’04, 2004.

[31] B. Schlinker et al. Condor: Better topologies through
declarative design. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, 2015.

[32] A. Singh et al. Jupiter rising: A decade of clos topologies
and centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15,
2015.

[33] P. Sun et al. A network-state management service. In
Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, 2014.

[34] X. Sun and G. G. Xie. Minimizing network complexity
through integrated top-down design. In Proceedings of the
Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, 2013.

[35] Y.-W. E. Sung et al. Towards systematic design of
enterprise networks. In Proceedings of the 2008 ACM
CoNEXT Conference, CoNEXT ’08, 2008.

[36] Y.-W. E. Sung et al. Modeling and understanding
end-to-end class of service policies in operational networks.
In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, 2009.

[37] C. Tang et al. Holistic configuration management at
facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, 2015.

[38] S. Vissicchio et al. Improving network agility with seamless
BGP reconfigurations. IEEE/ACM Trans. Netw.,
21(3):990–1002, June 2013.

439

http://thrift.apache.org/
https://www.djangoproject.com/
https://status.cloud.google.com/incident/compute/15064
http://www8.hp.com/us/en/software-solutions/network-management/index.html
http://www8.hp.com/us/en/software-solutions/network-management/index.html
http://www.openconfig.net/
http://www.opsware.com/
https://goo.gl/UtrzhL
https://aws.amazon.com/message/65648/
http://ibm.com/software/products/en/tivonetcconfmana
http://www.dmtf.org

	Introduction
	The Network and Use Cases
	Point-of-Presence
	Data Center
	Backbone

	Robotron Overview
	FBNet: Modeling the Network
	Data Model
	Object, Value, and Relationship
	Desired versus Derived

	APIs
	Read APIs
	Write APIs

	Architecture and Implementation
	Storage Layer
	Service Layer
	Scalability and Availability


	Management Life Cycle
	Network Design
	POPs and DCs
	Backbone
	Design Validation

	Config Generation
	Deployment
	Initial Provisioning
	Incremental Updates

	Monitoring
	Passive Monitoring
	Active Monitoring
	Config Monitoring


	Usage Statistics
	FBNet Models
	Design Change
	Configuration Change
	Monitoring Usage

	Robotron Evolution
	Experience and Future Work
	Related Works
	Conclusion
	References

