Principles of Communication

Analog Modulation System (1)

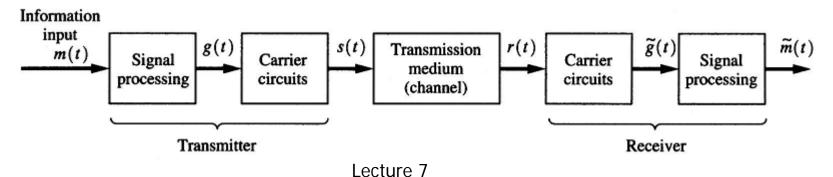
4-1, 4-2,4-3, 5-1 Lecture 7, 2008-9-26

Contents

- Baseband
- Bandpass
- Modulation
- Amplitude Modulation

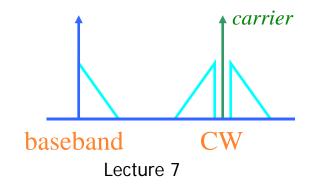
Baseband, Bandpass, and Modulation

- A baseband waveform has a spectral magnitude that is nonzero for frequencies in the vicinity of the origin (i.e., f = 0) and negligible elsewhere.
- A bandpass waveform has a spectral magnitude that is nonzero for frequencies in some band concentrated about a frequency $f = \pm f_c$, where $f_c \gg 0$. The spectral magnitude is negligible elsewhere. f_c is called the carrier frequency.
- Modulation is the process of imparting the source information onto a bandpass signal with a carrier frequency f_c by the introduction of amplitude or phase perturbations or both. This bandpass signal is called the modulated signal s(t), and the baseband source signal is called the modulating signal m(t).

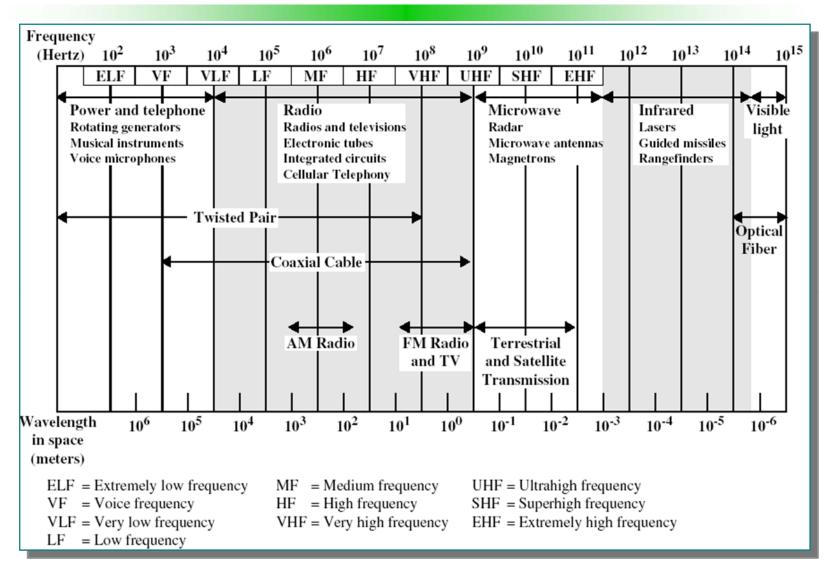


Why Modulation is Used?

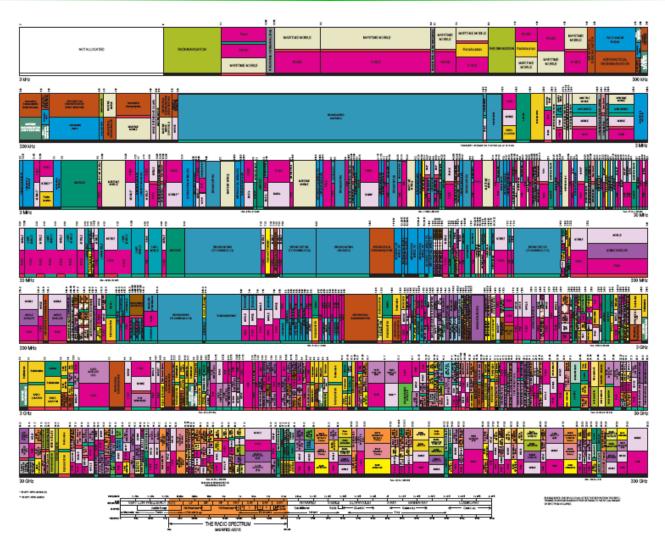
- Baseband communications is used in
 - PSTN local loop
 - PCM communications for instance between exchanges
- Using carrier to shape and shift the frequency spectrum (eg CW techniques) <u>enable modulation</u> by which several advantages are obtained
 - different radio bands can be used for communications
 - wireless communications
 - multiplexing techniques become applicable



Radio Spectrum



United States Frequency Allocation



Representation of a Physical Bandpass Waveform

I-Q (in-phase-quadrature) description for bandpass signals

$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\} = R(t)\cos[\omega_{c}t + \theta(t)] = x(t)\cos\omega_{c}t - y(t)\sin\omega_{c}t$$
$$g(t) = x(t) + jy(t) = |g(t)|e^{j\angle g(t)} = R(t)e^{j\theta(t)}$$
$$x(t) = \operatorname{Re}\{g(t)\} = R(t)\cos\theta(t)$$
$$y(t) = \operatorname{Im}\{g(t)\} = R(t)\sin\theta(t)$$

v(t): signal s(t), noise n(t), or signal plus noise r(t)

- g(t): complex envelope
- x(t): in phase modulation associated with v(t)
- y(t): quadrature modulation associated with v(t)

Complex Envelope Representation of Bandpass Waveform

Proof

$$\begin{aligned} v(t) &= \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} = \sum_{n=-\infty}^{-1} c_n e^{jn\omega_0 t} + c_0 + \sum_{n=1}^{\infty} c_n e^{jn\omega_0 t} \\ &= \sum_{n=1}^{\infty} c_{-n} e^{-jn\omega_0 t} + \sum_{n=1}^{\infty} c_n e^{jn\omega_0 t} = \sum_{n=1}^{\infty} (c_{-n} e^{-jn\omega_0 t} + c_n e^{jn\omega_0 t}) \\ &= \sum_{n=1}^{\infty} (c_n^* e^{-jn\omega_0 t} + c_n e^{jn\omega_0 t}) \\ &= \sum_{n=1}^{\infty} 2 \operatorname{Re} \{ c_n e^{jn\omega_0 t} \} \\ &= \operatorname{Re} \{ 2 \sum_{n=1}^{\infty} c_n e^{jn\omega_0 t} \} \\ &= \operatorname{Re} \{ 2 \sum_{n=1}^{\infty} c_n e^{j(n\omega_0 - \omega_c) t} e^{j\omega_c t} \} \\ &= \operatorname{Re} \{ g(t) e^{j\omega_c t} \} \\ g(t) &= 2 \sum_{n=1}^{\infty} c_n e^{j(n\omega_0 - \omega_c) t} \\ & \operatorname{Lecture} 7 \end{aligned}$$

8

The Phasor Description of Bandpass Signal

$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\} = R(t)\cos[\omega_{c}t + \theta(t)]$$

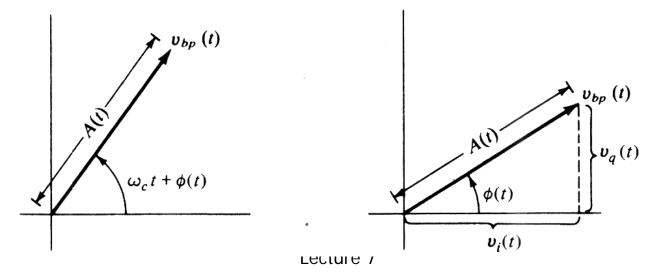
$$g(t) = x(t) + jy(t) = |g(t)|e^{j\angle g(t)} = R(t)e^{j\theta(t)}$$

$$R(t) = |g(t)| = \sqrt{x^{2}(t) + y^{2}(t)}$$

$$\theta(t) = \angle g(t) = \tan^{-1}\frac{y(t)}{x(t)}$$

R(t): amplitude modulation (AM) on v(t)

 $\theta(t)$: phase modulation (PM) on v(t)



Spectrum of a Bandpass Signal

If a bandpass waveform is represented by

 $v(t) = \operatorname{Re}\{g(t)e^{j\omega_c t}\}\$

then the spectrum of the bandpass waveform is

 $V(f) = \frac{1}{2} [G(f - f_c) + G^*(-f - f_c)]$

and the PSD of the waveform is

$$P_{v}(f) = \frac{1}{4} [P_{g}(f - f_{c}) + P_{g}(-f - f_{c})]$$

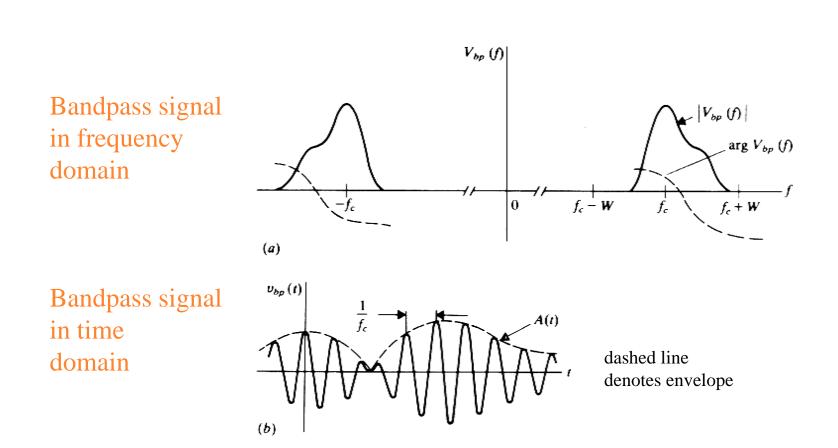
where G(f) = F[g(t)] and $P_g(f)$ is the PSD of g(t).

Proof

Proof.
$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\} = \frac{1}{2}[g(t)e^{j\omega_{c}t} + (g(t)e^{j\omega_{c}t})^{*}]$$

 $w(t)e^{j\omega_{c}t} \leftrightarrow W(f - f_{c}) \Rightarrow F[g(t)e^{j\omega_{c}t}] = G(f - f_{c})$
 $w^{*}(t) \leftrightarrow W^{*}(-f) \Rightarrow F[(g(t)e^{j\omega_{c}t})^{*}] = G^{*}(-f - f_{c})$
 $V(f) = F[\frac{1}{2}[g(t)e^{j\omega_{c}t} + (g(t)e^{j\omega_{c}t})^{*}] = \frac{1}{2}[G(f - f_{c}) + G^{*}(-f - f_{c})]$
 $R_{v}(\tau) = \langle v(t)v(t + \tau) \rangle = \langle \operatorname{Re}\{g(t)e^{j\omega_{c}t}\}\operatorname{Re}\{g(t + \tau)e^{j\omega_{c}(t + \tau)}\} \rangle$
 $\operatorname{Re}\{c_{1}c_{2}\} = \operatorname{Re}\{(a_{1} + jb_{1})(a_{2} + jb_{2})\} = a_{1}a_{2} - b_{1}b_{2}$
 $\operatorname{Re}\{c_{1}^{*}c_{2}\} = \operatorname{Re}\{(a_{1} - jb_{1})(a_{2} + jb_{2})\} = a_{1}a_{2} + b_{1}b_{2}$
 $\operatorname{Re}\{c_{1}\}\operatorname{Re}\{c_{2}\} = a_{1}a_{2} = \frac{1}{2}[\operatorname{Re}\{c_{1}c_{2}\} + \operatorname{Re}\{c_{1}^{*}c_{2}\}]$
 $R_{v}(\tau) = \langle \frac{1}{2}[\operatorname{Re}\{g(t)e^{j\omega_{c}t}g(t + \tau)e^{j\omega_{c}(t + \tau)}\} + \operatorname{Re}\{g^{*}(t)e^{-j\omega_{c}t}g(t + \tau)e^{j\omega_{c}(t + \tau)}\}] \rangle$
 $= \frac{1}{2} \langle \operatorname{Re}\{g(t)g(t + \tau)e^{j2\omega_{c}t}e^{j\omega_{c}\tau}\} + \frac{1}{2} \langle \operatorname{Re}\{g^{*}(t)g(t + \tau)e^{j\omega_{c}\tau}\} \rangle$
 $= \frac{1}{2}\operatorname{Re}\{\langle g^{*}(t)g(t + \tau)e^{j2\omega_{c}t} + e^{j\omega_{c}\tau}\} + \frac{1}{2}\operatorname{Re}\{\langle g^{*}(t)g(t + \tau)e^{j\omega_{c}\tau}\} \rangle$
 $= \frac{1}{2}\operatorname{Re}\{\langle g^{*}(t)g(t + \tau)e^{j2\omega_{c}t}e^{j\omega_{c}\tau}\} + \frac{1}{2}\operatorname{Re}\{R_{g}(\tau)e^{j\omega_{c}\tau}\} \rangle$
 $= \frac{1}{2}\operatorname{Re}\{\langle g^{*}(t)g(t + \tau)e^{j2\omega_{c}t}e^{j\omega_{c}\tau}\} = \frac{1}{2}\operatorname{Re}\{R_{g}(\tau)e^{j\omega_{c}\tau}\} \rangle$
 $= \frac{1}{2}\operatorname{Re}\{\langle g^{*}(t)g(t + \tau)e^{j2\omega_{c}t}e^{j\omega_{c}\tau}\} + \frac{1}{2}\operatorname{Re}\{R_{g}(\tau)e^{j\omega_{c}\tau}\} \rangle$
 $Lecture 7$

Bandpass Signal



Evaluation of Power

■ Example 4-1 Amplitude-modulated signal

$$g(t) = A_c[1+m(t)] \leftrightarrow G(f) = A_c[\delta(f)+M(f)]$$

 $s(t) = \operatorname{Re}\{g(t)e^{j\omega_c t}\} = \operatorname{Re}\{A_c[1+m(t)]e^{j\omega_c t}\} = A_c[1+m(t)]\cos\omega_c t$
 $w(t)\cos(\omega_c t+\theta) \leftrightarrow \frac{1}{2}[e^{j\theta}W(f-f_c)+e^{-j\theta}W(f+f_c)] \Rightarrow$
 $S(f) = \frac{1}{2}[A_c[\delta(f-f_c)+M(f-f_c)] + A_c[\delta(f+f_c)+M(f+f_c)]]$
 $= \frac{1}{2}A_c[\delta(f-f_c)+M(f-f_c)+\delta(f+f_c)+M(f+f_c)]$
 $P_s = \frac{1}{2} < |g(t)|^2 >= \frac{1}{2} < |A_c[1+m(t)]|^2 >= \frac{1}{2}A_c^2 < |[1+m(t)]|^2 >$
 $= \frac{1}{2}A_c^2 < [1+m(t)]^2 >= \frac{1}{2}A_c^2 < 1+2m(t)+m^2(t) >$
 $= \frac{1}{2}A_c^2[1+2 < m(t) > + < m^2(t) >] = \frac{1}{2}A_c^2[1+]$
 $= \frac{1}{2}A_c^2[1+P_m]$
 P_m : power in $m(t)$
 $\frac{1}{2}A_c^2P_m$: power in sideband
 $\frac{1}{2}A_c^2$: carrier power

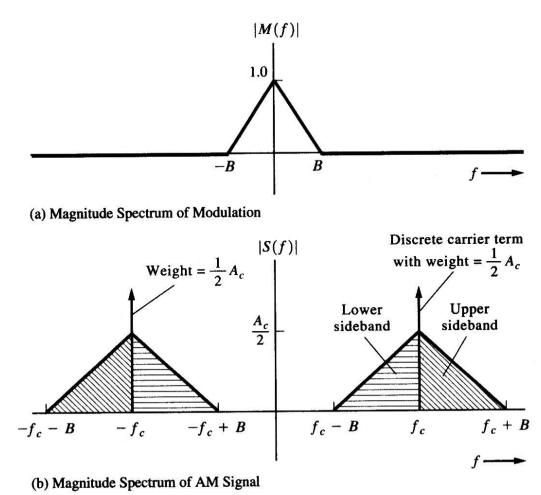


Figure 4–2 Spectrum of AM signal.

Amplitude Modulation

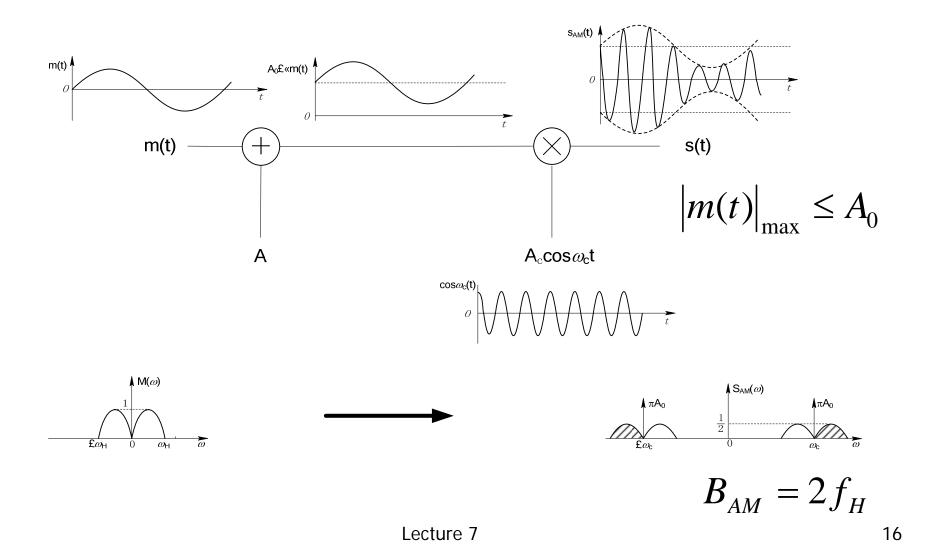
Amplitude Modulation (AM) results when a dc bias is added to the signal m(t) before the modulation process.

$$s(t) = [A + m(t)]A'_c \cos \omega_c t = A_c [1 + am_n(t)] \cos \omega_c t$$

- m_n(t) is the message signal normalized such that the minimum value of m_n(t) is -1
- The parameter a is referred to as the modulation index.
- s(t) is said to be 100% modulated if a = 1.
- The spectrum of AM signal is given by:

$$S(f) = \frac{A_c}{2} \left[\delta(f - f_c) + aM_n(f - f_c) + \delta(f + f_c) + aM_n(f + f_c) \right]$$

Waveform and Spectrum of AM signal



Definition

■ The normalized average power of the AM signal is

$$< s^{2}(t) > = < A_{c}^{2} [1 + am_{n}(t)]^{2} \cos^{2} \omega_{c} t >$$

$$= \frac{1}{2} A_{c}^{2} < 1 + 2am_{n}(t) + m_{n}^{2}(t) >$$

$$= \frac{1}{2} A_{c}^{2} + \frac{1}{2} A_{c}^{2} a^{2} m_{n}^{2}(t)$$
discrete carrier sideband power

The modulation efficiency is the percentage of the total power of the modulated signal that conveys information.

$$E = \frac{\frac{1}{2}A_c^2 a^2 < m_n^2(t) >}{\frac{1}{2}A_c^2 + \frac{1}{2}A_c^2 a^2 < m_n^2(t) >} \times 100\% = \frac{a^2 < m_n^2(t) >}{1 + a^2 < m_n^2(t) >} \times 100\%$$

$$\blacksquare \text{ Max[E]} = 50\%$$

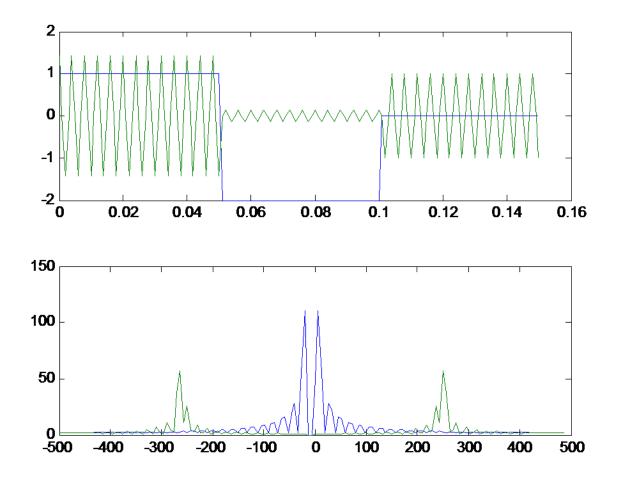
Example

The message signal is

$$m(t) = \begin{cases} 1, & 0 \le t < \frac{t_0}{3} \\ -2, & \frac{t_0}{3} \le t < \frac{2t_0}{3} \\ 0, & \frac{2t_0}{3} \le t \end{cases}$$

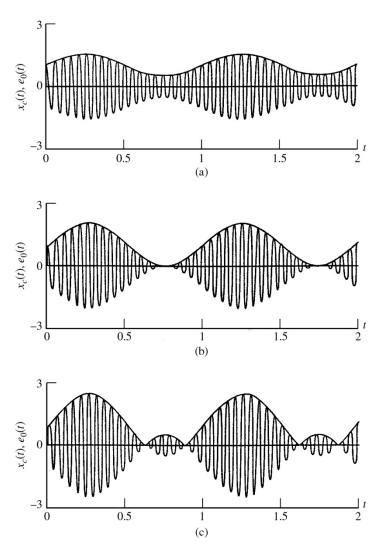
- The carrier is $c(t) = cos(2\pi f_c t)$ Where fc = 250 Hz, t0 = 0.15s, a = 0.85
- Calculate
 - waveform and spectrum
 - Power of modulated signal and modulation efficiency

Waveform and Spectrum



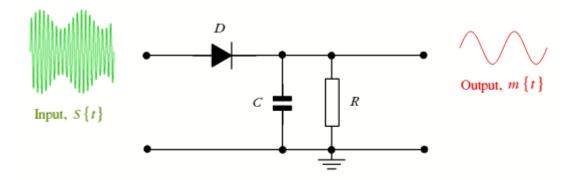
Overmodulation

- s(t) is said to be overmodulated if a > 1.
- Example, (a) a = 0.5, (b) a = 1, (c) a = 1.5
- Overmodulation results in spurious emissions by the modulated carrier, and distortion of the recovered modulating signal.
- Overmodulation is not allowed by FCC.



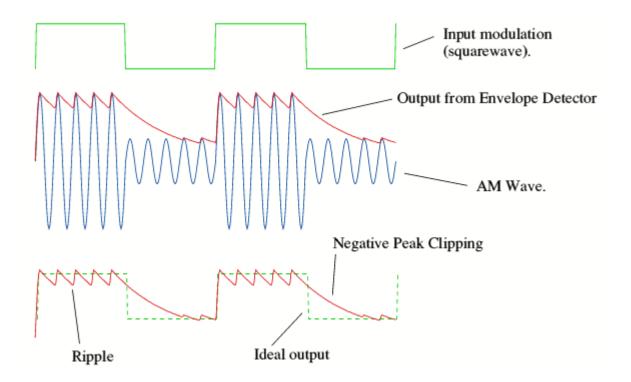
Envelope Detector

- The main advantage of AM is that, since a coherent reference is not needed for demodulation as long as a ≤ 1, the demodulator becomes simple and inexpensive.
- In many applications, such as commercial broadcast, AM is sufficient to justify its use.



Ripple and Negative Peak Clipping

In order for the envelope-detection process to operate properly, the RC time constant of the demodulator, must be chosen carefully.



Homework

■ LC 4-1, 4-9, 4-10, 5-2, 5-3, 5-5

