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White-Noise Processes
A random process x(t) is said to be a white-noise process if the 
PSD is constant over all frequencies, Px(f) = N0/2, where N0 is a 
positive constant.
The autocorrelation function for the white noise is obtained by 
taking the inverse Fourier transform Rx(t) = N0/2 δ(t)
Any two different samples of a white noise process are 
uncorrelated. Since thermal noise is a Gaussian process and the 
sample are uncorrelated, the noise samples are also independent. 
The effect on the detection process of a channel with Additive 
White Gaussian Noise is that the noise affects each transmitted 
symbol independently. Memoryless channel.
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Noise in communication systems
AWGN: additive white 
Gaussian noise

Additive: Noise is added (not 
multiplied) to the signal
White: has constant PSD 
(equal power for all 
frequency)
Gaussian: in every time-
instant (sampling instant), 
the noise is Gaussian random 
variable

Noise is usually assumed 
zero-mean AWGN
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Cont’

AWGN is a useful abstract noise model, although it is 
not practical due to infinite power
In sampled process (discrete process), since δ(0)=1, 
we still have 

Discrete zero-mean AWGN: power & variance are both N0/2

AWGN PSD & 
Auto-
correlation

2 2 0{ }
2

N
E Xσ = =



Lecture 6 6

Input-Output  Relationships
A linear time-invariant system may be described by its impulse 
response h(t) or equivalently, by its transfer function H(f).  

Input Output

Linear system

x(t)
X(f)

h(t)
H(f)

y(t)
Y(f)

Rx(t)
Px(f)

Ry(t)
Py(f)

Deterministic signals  
y(t) = h(t)*x(t)
Y(f) = H(f)X(f)

If a wide-sense stationary random process x(t) is applied to the 
input of a time-invariant linear network with impulse response 
h(t), the output autocorrelation is

Ry(t) = h(-t)*h(t)*Rx(t)
Py(f) =|H(f)|2PX(f)
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Two Linear Cascaded Networks

Input Output

Overall response: h (t) = h1(t) * h2(t)
H(f) = H1(f) H2(f)

x(t)
X(f)

h1(t)
H1(f)

y(t)
Y(f)

h2(t)
H2(f)



Lecture 6 8

Two Linear Systems
Let x1(t) and x2(t) be wide-sense stationary inputs for two time-
invariant linear systems, then the output cross-correlation 
function is

Input Output

Two Linear Systems

x2(t)
h2(t)
H2(f) y2(t)

Rx1x2(t)
Px1x2 (f)

x1(t) h1(t)
H1(f)

y1(t)

Ry1y2(t)
Py1y2 (f)

Ry1y2(t) = h1(-t) * h2(t) * Rx1x2(t)
Py1y2(f) =H1

*(f) H2(f) PX1x2(f)
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Example
Output autocorrelation and PSD for an RC low-pass filter, white noise

x(t) y(t)
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Example
Signal-to-noise ratio at the output of an RC low-pass filter
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( ) ( ) ( )o oy t s t n t= +
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Bandwidth Measures
Equivalent Bandwidth
For a wide-sense stationary process x(t), the equivalent bandwidth is
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Where f0 is the frequency at which Px(f) is a maximum

RMS Bandwidth
If x(t) is a low-pass wide-sense stationary process, the rms 
bandwidth is 
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Theorem
For a wide-sense stationary process x(t), the mean-squared 
frequency is
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Example
Equivalent bandwidth and RMS bandwidth for an RC LRF
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The Gaussian Random Process
A random process x(t) is said to be Gaussian if the random 
variable x1=x(t1), x2=x(t2), …, xN=x(tN) have an N-dimensional 
Gaussian PDF for any N and t1, t2, …, tN
Let x be the column vector denoting the N random variables:
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The N-dimensional Gaussian PDF is
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Where the mean vector is 1 1
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Properties of Gaussian Processes
fx(x) depends only on C and m, which is another way of saying 
that the N-dimensional Gaussian PDF is completely specified by 
the first- and second-order moments
Since the {xi = x(ti)} are jointly Gaussian, the xi = x(ti) are 
individually Gaussian.
When C is a diagonal matrix, the random variables are 
uncorrelated. Furthermore, the Gaussian random variables are 
independent when they are uncorrelated.
A linear transformation of a set of Gaussian random variables 
products another set of Gaussian random variables
A wide-sense stationary Gaussian process is also strict-sense 
stationary
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Theorem
If the input to a linear system is a Gaussian random 
process, the system output is also a Gaussian process.
Proof
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Example
White Gaussian-Noise Process input to the LPF, the first order pdf 
(Homework)
The output is nonwhite, but Gaussian
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Homework
6-21, 6-25, 6-27, 6-33, 6-34
Show the first order pdf of AWGN after an LPF.
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