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White-Noise Processes

W
A random process x(t) is said to be a white-noise process if the
PSD is constant over all frequencies, P,(f) = Ny/2, where N, is a
positive constant.

The autocorrelation function for the white noise is obtained by
taking the inverse Fourier transform R (t) = Ny/2 (t)

Any two different samples of a white noise process are
uncorrelated. Since thermal noise is a Gaussian process and the
sample are uncorrelated, the noise samples are also independent.

The effect on the detection process of a channel with Additive
White Gaussian Noise is that the noise affects each transmitted
symbol independently. Memoryless channel.
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Noise In communication systems

-
B AWGN: additive white
Gaussian noise
B Additive: Noise is added (not
multiplied) to the signal

B White: has constant PSD
(equal power for all
frequency)

B Gaussian: in every time-
instant (sampling instant),
the noise is Gaussian random
variable

B Noise is usually assumed
zero-mean AWGN
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n(t)

Signal model: y(t) = x(t) + n(t)
zero-mean AWGN n(t) properties:

. N
i) PSD: Gn(f)=70 watts/Hz

) . N
i) Autocorrelation: R, (7) = 705&)

r]2

i) pdf: e 207

(n)=—
V= oo




Cont’

B AWGN is a useful abstract noise model, although it is
not practical due to infinite power

B In sampled process (discrete process), since 0(0)=1,
we still have

N
% = E{x?}=—2
2
B Discrete zero-mean AWGN: power & variance are both N,/2
Gu(D R (7)
Ny/2
$ AWGN PSD &
. Auto-
0 Y correlation
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Input-Output Relationships

B A linear time-invariant system may be described by its impulse
response h(t) or equivalently, by its transfer function H(f).

Deterministic signals

y(t) = h(t)*x(t)

Y(f) = H(H)X(F)

If a wide-sense stationary random process x(t) is applied to the
input of a time-invariant linear network with impulse response
h(t), the output autocorrelation is

X(1)
X(f)

Input

R,(t) = h(-D)*h(D)*R,(t)
Py(F) =[H(F)[*Px(f)

h(t)

Ru(1)
P(f)

y(t)
Y(f)

H(1)

Linear system
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R/(D)
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Two Linear Cascaded Networks

g
X1 y(t)
O (t) h,(t) 0

Input ——» 1 > 2 » Output

H,(f) H,(f)
— _/
T

Overall response: h (t) = hy(t) * h,(t)
H(f) = H,(f) H,(f)
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Two Linear Systems

n N
B Let x1(t) and x2(t) be wide-sense stationary inputs for two time-
invariant linear systems, then the output cross-correlation

function is
R,1y2() = hy(-t) * hy(t) * Ryy,0(t)
PylyZ(f) =H1*(f) H,(f) Pyyyo(F)

g ( 1(t

X4(t) | hy) ya(t) :
Rx1x2 (t) H 1 (f) R (t)
Input p 5 Pﬁi ) Output
J ha(t)

(1) H,(f) V,00

Two Linear Systems
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Example

-
B Output autocorrelation and PSD for an RC low-pass filter, white noise
N
P(f)=-—"2
(1) 5
N, /2
(1) =[H(N ()= — 2
1+ (f/Bygs)
N
R __"o e—|r|/(RC)
/() =2Re
O MN O
R
H(f)= L here B 1
X(t) — C y() ()= fF) WHET® B 2zRC
1+j( }
BBdB
O O
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Example

n N
B Signal-to-noise ratio at the output of an RC low-pass filter

Input signal X(t) =s.(t) +n.(t)

s, (t) = A, cos(apt + 6,)
P, (f)= N, /2

<Si2 (t)> = A(?/Z
(n?)=[" P, (f)df =oo

(ijm : <zn<t>>>

Input power

Input SNR N
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Output signal

Output power

Cont’

y(t) =, (t) +n, (t)

s,(t) =5, () *h()

(s20)= A H() /2

(n7) = No/(4RC)

Output SNR (

S

N

jout

(s5(1)) _2A IH(f,)] RC _

2 AZRC

(né) Ny
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Bandwidth Measures

i
B Equivalent Bandwidth

For a wide-sense stationary process x(t), the equivalent bandwidth is

1 _ R(0)
B““Px(fo)jo (1) 2P (f,)

Where f, is the frequency at which P,(f) is a maximum

B RMS Bandwidth

If x(t) is a low-pass wide-sense stationary process, the rms
bandwidth is

B, =+/f"

rms

- j_ipx(z)dz_ G
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Theorem

T
B For a wide-sense stationary process x(t), the mean-squared

frequency is
|1 |dR()
| (27)’R(0)| dr?

=0
B Proof
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Example

-
B Equivalent bandwidth and RMS bandwidth for an RC LRF

P(O) N /(4RC) 1 7By,

“a"2P(f) 2(N,/2) 4RC 2

" £2P (f)df B 2
Brms :\/-[oo y :\/ ;L _[ f2 2 df
R, (0) 2m°RC 9= (B, 5)? + f
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The Gaussian Random Process

i §

B A random process X(t) is said to be Gaussian if the random
variable x;=x(t,), X,=x(t,), ..., Xy=X(t\) have an N-dimensional
Gaussian PDF for any N and t;, t,, ..., t

Let x be the column vector denoting the N random variables:

X | | x(t) |

X, x(t,)
X = =

Xy | X(ty )

The N-dimensional Gaussian PDF is

f (X) _ 1 e—[(x—m)T C‘l(x—m)}/z
T (2m)V?|Det Cf?
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Cont’

.
. X | [m |
Where the mean vector is o
m = )—( = X2 = m2

C11 ClZ ClN
The covariance matrix is c_|ta Gz Can

_Cll CNZ CNN _
Where ¢; =(x—m)(x;—m;)=[xt)-m]| xt,)-m, |
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Properties of Gaussian Processes

W
f.(x) depends only on C and m, which is another way of saying
that the N-dimensional Gaussian PDF is completely specified by
the first- and second-order moments
Since the {x; = x(t)} are jointly Gaussian, the x, = x(t;) are
individually Gaussian.
When C is a diagonal matrix, the random variables are

uncorrelated. Furthermore, the Gaussian random variables are
independent when they are uncorrelated.

A linear transformation of a set of Gaussian random variables
products another set of Gaussian random variables

A wide-sense stationary Gaussian process is also strict-sense
stationary
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Theorem

1l
B If the input to a linear system is a Gaussian random
process, the system output is also a Gaussian process.

B Proof

Lecture 6

18



Example

n N
B White Gaussian-Noise Process input to the LPF, the first order pdf
(Homework)

B The output is nonwhite, but Gaussian
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Homework

-
B 6-21, 6-25, 6-27, 6-33, 6-34

B Show the first order pdf of AWGN after an LPF.
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