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Random Process
A real random process (or stochastic process) is an indexed set of 
real functions of some parameter (usually time) that has certain 
statistical properties.
Imagine voltage waveforms that might be emitted from a noise 
source. In general, v(t, Ei) denotes the waveform that is obtained 
when the event Ei of the sample space occurs. v(t, Ei) is said to 
be a sample function of the sample space. The set of all possible 
sample functions {v(t, Ei)} is called the ensemble and defines the 
random process v(t) that describes the noise source.

Sample functions

Random 
variables

time (t)

v(t, E1)

v(t, E2)

v(t, EN)

v(tk, Ei) for all i
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Random Process
The difference between a random variable and a random process 
is that for a random variable, an outcome in the sample space is 
mapped into a number, whereas for a random process it is 
mapped into a function of time.
A random process may be described by an indexed set of random 
variables.
To describe a general random process x(t) completely, an N-
dimensional PDF, fx(x), is required, where X = (x1, x2, …, xN), xj = 
x(tj) and N → ∞. fx(x) = fx(x(t1), x(t2),…, x(tN))
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Stationary
A random process x(t) is said to be stationary to the order N if, 
for any t1, t2, …, tN
fx(x(t1), x(t2),…, x(tN))= fx(x(t1+t0), x(t2+t0),…, x(tN+t0))
Where t0 is any arbitrary real constant. Furthermore, the process 
is said to be strictly stationary if it is stationary to the order N→∞.

(a) Time-varying mean

(b) Time-varying variance

(c) Stationary
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Example
First-order stationary
The requirement for first-order stationary is that is the first-order 
PDF not be a function of time. Let the random process be 
x(t)=Asin(ωt+θ)
Case 1: Stationary Result. Assume A and ω are deterministic 
constants and θ is a random variable uniformly distributed over -
π to π. 

2 2
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( )

0,| |

x A
f x A x

x A
π
⎧ ≤⎪= −⎨
⎪ >⎩

Case 2: Nonstationary Result. Assume A, ω and θ are deterministic 
constants. 

( ) ( sin( ))f x x A tδ ω θ= − +
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Ergodic
The time average is

[ ] [ ]
/ 2

/ 2

1( ) lim ( )
T

TT
x t x t dt

T −→∞
= ∫

The ensemble average is

[ ] [ ]( ) ( )x xx t x f x dx m
∞

−∞
= =∫

A random process is said to be ergodic if all time averages of any 
sample function are the corresponding ensemble averages 
(expectations).

Time average

Ensemble average

time (t)

v(t, E1)

v(t, E2)

v(t, EN)

v(tk, Ei) for all i
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Example
Let a random process be given by x(t)=Acos(ωt+θ), Assume A 
and ω are deterministic constants and θ is a random variable 
uniformly distributed over 0 to 2π.

0

0
0

1( ) cos( ) 0
T

x t A t dt
T

ω θ= + =∫

[ ] [ ]
2

0

1( ) ( ) cos( ) 0
2

x x f d A t d
π

θθ θ θ ω θ θ
π

∞

−∞
= = + =∫ ∫

The ensemble averages

The time averages

The time average is equal to the ensemble average.
Shall we conclude that the process is ergodic?   
No. Because we have not evaluated all the possible time and 
ensemble averages. In general, it is difficult to prove that a 
process is ergodic   
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Ergodic vs. Stationary
The ergodic process must be stationary, because otherwise the 
ensemble averages would be a function of time.
However, if a process is known to be stationary, it may or may 
not be ergodic.
Excise 6.2
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Correlation Functions
The autocorrelation function of a random process x(t) is

1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , )x xR t t x t x t x x f x x dx dx
∞ ∞

−∞ −∞
= = ∫ ∫

where x1=x(t1) and x2=x(t2). 
If the process is stationary to the second order, the autocorrelation 
function is a function only of the time difference τ= t2- t1

( ) ( ) ( )xR x t x tτ τ= +
if x(t) is second-order stationary 
A random process is said to be wide-sense stationary if

1 2 2 1
( ) 0 and ( , ) ( )x x

d x t R t t R t t
dt

= = −

The auto-correlation function has following properties:
2(0) ( )

( ) ( )
(0) ( )

x

x x

x x

R x t
R R
R R

τ τ
τ

=
= −

≥
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Cross-Correlation Function
The cross-correlation function of two random process x(t) and y(t) is

1 2 1 2( , ) ( ) ( )xyR t t x t y t=
If x(t) and y(t) are jointly stationary, the cross-correlation function is

1 2 2 1( , ) ( )xy xyR t t R t t= −
The cross-correlation function has following properties:

( ) ( )

( ) (0) (0)

1( ) (0) (0)
2

xy yx

xy x y

xy x y

R R

R R R

R R R

τ τ

τ

τ

− =

≤

⎡ ⎤≤ +⎣ ⎦

[ ][ ]( ) ( ) ( )xy x yR x t y t m mτ τ= + =

Two random processes x(t) and y(t) are said to be uncorrelated if

( ) 0xyR τ =

Two random processes x(t) and y(t) are said to be orthogonal if
for all values of τ

for all values of τ
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Power Spectral Density
The power spectral density for a random process x(t) is given by

2| ( ) |
( ) lim T

x T

X f
P f

T→∞

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟=
⎜ ⎟
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/ 2 2

/ 2
( ) ( )

T j ft
T T

X f x t e dtπ−

−
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Wiener-Khintchine Theorem
When x(t) is a wide-sense stationary process, the PSD can be 
obtained from the Fourier transform of the autocorrelation function

2( ) ( ) j ft
x xP f R t e dtπ∞ −

−∞
= ∫

Conversely,
2( ) ( ) j ft

x xR t P f e dtπ∞

−∞
= ∫

To calculate the PSD of a random process:
1. Direct method: Use the original definition of PSD
2. Indirect method: Use Wiener-Khintchine Theorem
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Proof of W-K Theorem
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From the definition of PSD
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Proof of W-K Theorem
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From the definition of PSD
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Proof of W-K Theorem

2| ( ) |
( ) lim T

x T

X f
P f

T→∞

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟=
⎜ ⎟
⎝ ⎠

From the definition of PSD
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Cont’
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If x(t) is stationary, 
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Example

example 6-3
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Properties of PSD
Px(f) is always real
Px(f) ≥ 0
When x(t) is real, Px(-f) = Px(f)
Total normalized power ( )xP f df P

∞

∞
=∫

(0) ( )x xP R dτ τ
∞

−∞
= ∫
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General Formula for the PSD of 
Digital Signals 

Pi is the probability of getting the 
product (anan+k)I, of which there are I 
possible values
F(f) is the spectrum of the pulse shape 
of the digital symbol

2

1

| ( ) |( ) ( )
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sjk T
x

s
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n n k n n k i i
i

F ff R k e
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R k a a a a P
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+ +
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∑

∑
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White-Noise Processes
A random process x(t) is said to be a white-noise process if the 
PSD is constant over all frequencies, Px(f) = N0/2, where N0 is a 
positive constant.
The autocorrelation function for the white noise is obtained by 
taking the inverse Fourier transform Rx(t) = N0/2 δ(t)
Any two different samples of a white noise process are 
uncorrelated. Since thermal noise is a Gaussian process and the 
sample are uncorrelated, the noise samples are also 
independent. 
The effect on the detection process of a channel with Additive 
White Gaussian Noise is that the noise affects each transmitted 
symbol independently. Memoryless channel.
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Measurement of PSD

Analog techniques
Narrowband filters
RF spectrum analyzer

Numerical computation
2| ( ) |( ) T
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Homework
6-2, 6-3, 6-9, 6-15, 6-17
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