Signals and Spectra (2)

Appendix B

Lecture 4, 2008-09-16

I ntroduction

■ Probability and Random Variables
■ Cumulative Distribution Functions and Probability Density Functions

■ Ensemble Average and Moments
■ Functional Transformations of Random Variables

■ Multi-Variable and Bi-Variable Statistics
■ Central Limit Theorem

Probability

■ $P(A)$, the probability of an event A, is defined in terms of the relative frequency of A occurring in n trails.

$$
P(A)=\lim _{n \rightarrow \infty}\left(\frac{n_{A}}{n}\right)
$$

■ Mathematically characterizes random events.

- Defined on a probability space: (S,E,P(•))

■ Sample space of possible outcomes.
■ Sample space has a subset of events

- Probability defined for these subsets.

The Axioms of Probability

■ Axiom 1. $\mathrm{P}(\mathrm{A}) \geq 0$ for all events A in the sample space S.

■ Axiom 2. The probability of all possible events occurring is unity, $P(S)=1$.

- Axiom 3. If the occurrence of A precludes the occurrence of B, and vice vera (i.e. A and B are mutually exclusive), then $P(A \cup B)=P(A)+P(B)$

J oint and Conditional Probability

- The probability of a joint event $A B$, is

$$
P(A B)=\lim _{n \rightarrow \infty}\left(\frac{n_{A B}}{n}\right)
$$

Where $n_{A B}$ is the number of times that the event $A B$ occurs in n trials.
■ Theorem: Let $E=A+B$; then $P(E)=P(A)+P(B)-P(A B)$
■ The probability that an event A occurs, given that an event B has also occurred, is denoted by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$, which is defined as

$$
P(A \mid B)=\lim _{n_{B} \rightarrow \infty}\left(\frac{n_{A B}}{n_{B}}\right)
$$

■ Theorem: Let $E=A B$; then $P(E)=P(A) P(B \mid A)=P(B) P(A \mid B)$ This is known as Bayes' Theorem.

■ Two events, A and B, are said to be independent if either $P(A \mid B)=$ $P(A)$ or $P(B \mid A)=P(B)$

Random Variables

- A real-value random variable is a real-valued function defined on the events of the probability system.
- In the applications of probability it is more convenient to work in terms of numerical outcomes (e.g. the number of errors in a digital data message) rather than non-numerical outcomes (e. g. failure of a component)

Cumulative Distribution Function

■ The cumulative distribution function (CDF) of the random variable x is given by

$$
F(a) \square P(x \leq a) \equiv \lim _{n \rightarrow \infty}\left(\frac{n_{x \leq a}}{n}\right)
$$

$F(a)$ is a unitless function

- CDF has following properties:

■ 1. $0 \leq F(a) \leq 1$, with $F(-\infty)=0$ and $F(\infty)=1$

- 2. $F(a)$ is a non-decreasing function of x; that is $F(x 1) \leq F(x 2)$ if $x 1 \leq x 2$
- 3. $\mathrm{F}(\mathrm{a})$ is continuous from the right $\lim _{\substack{\varepsilon \rightarrow 0 \\ \varepsilon>0}} F(a+\varepsilon)=F(a)$

Probability Density Function

■ The probability density function (PDF) of the random variable x is given by

$$
f(x)=\left.\frac{d F(a)}{d a}\right|_{a=x}=\left.\frac{d P(x \leq a)}{d a}\right|_{a=x}=\lim _{\substack{n \rightarrow \infty \\ \Delta x \rightarrow 0}}\left[\frac{1}{\Delta x}\left(\frac{n_{\Delta x}}{n}\right)\right]
$$

$f(a)$ has units of $1 / x$

- PDF has following properties:

■ 1. $f(x) \geq 0$. That is, $f(x)$ is a nonnegative function
■ 2. $\int_{-\infty}^{\infty} f(x) d x=F(+\infty)=1$

Ensemble Average and Moments

■ The expected value, which is also called the ensemble average, of $\mathrm{y}=\mathrm{h}(\mathrm{x})$ is given by $\bar{y}=\int_{-\infty}^{\infty}[h(x)] f(x) d x$
The ensemble average of y is also denoted by $\mathrm{E}[\mathrm{y}]$ or $<\mathrm{y}>$.
■ The th moment of the random variable x taken about the point x
$=x 0$ is given by $\overline{\left(x-x_{0}\right)^{r}}=\int_{-\infty}^{\infty}\left(x-x_{0}\right)^{r} f(x) d x$
■ The mean is the first moment taken about the origin ($x 0=0$)

$$
m \square \bar{x}=\int_{-\infty}^{\infty} x f(x) d x
$$

■ The variance is the second moment taken about the mean

$$
\sigma^{2}=\overline{(x-\bar{x})^{2}}=\int_{-\infty}^{\infty}(x-\bar{x})^{2} f(x) d x
$$

■ The standard deviation is the square root of the variance

$$
\sigma=\sigma^{2}=\sqrt{\int_{-\infty}^{\infty}(x-\bar{x})^{2} f(x) d x}
$$

- Theorem $\sigma^{2}=\overline{x^{2}}-(\bar{x})^{2}$

Some Useful Distributions

■ Binomial Distribution

- Poisson Distribution

■ Uniform Distribution
■ Gaussian Distribution
■ Sinusoidal Distribution

Functional Transformations

Functional transformation of random variables
■ Theorem If $\mathrm{y}=\mathrm{h}(\mathrm{x})$, where $\mathrm{h}($.$) is the output-to-input (transfer)$ characteristic of a device without memory, then the PDF of the output is

$$
f_{y}(y)=\left.\sum_{i=1}^{M} \frac{f_{x}(x)}{|d y / d x|}\right|_{x=x_{i}=h_{i}^{-1}(y)}
$$

■ Where $\mathrm{fx}(\mathrm{x})$ is the PDF of the input x . M is the number of real roots of $y=h(x)$. That is, the inverse of $y=h(x)$ gives x_{1}, x_{2}, \ldots, X_{M} for a single value of y.

- $h(x)$ should not be confused with the impluse response of a linear network, which is denoted by $\mathrm{h}(\mathrm{t})$

Example

■ Sinusoidal distribution

Let $y=h(x)=A \sin x$, Where x is uniformly distributed over $-\pi$ to $+\pi$.
First, $-1 \leq \sin x \leq 1$, so $f(y)=0$ for $|y|>A$.
Second, there being two values of $x, x 1$ and $x 2$ for each value of y, since $\sin x=\sin (\pi-x)$ applying functional transformation theorem,

$$
f_{y}(y)=\left\{\begin{array}{cc}
\frac{f_{x}\left(x_{1}\right)}{\left|A \cos x_{1}\right|}+\frac{f_{x}\left(x_{2}\right)}{\left|-A \cos x_{2}\right|},|y| \leq A \\
0, \quad y \text { elsewhere }
\end{array}\right.
$$

By using the above result and the uniform PDF of $\mathrm{fx}(\mathrm{x})$,

$$
f_{y}(y)=\left\{\begin{array}{c}
\frac{1}{\pi \sqrt{A^{2}-y^{2}}},|y| \leq A \\
0,|y|>A
\end{array}\right.
$$

Multi-Variable Statistics

■ The N-dimensional CDF is $F\left(a_{1}, a_{2}, \ldots, a_{N}\right)=P\left[\left(x_{1} \leq a_{1}\right)\left(x_{2} \leq a_{2}\right) \ldots\left(x_{N} \leq a_{N}\right)\right]$

$$
=\lim _{n \rightarrow \infty}\left[\frac{n_{\left(x_{1} \leq a_{1}\right)\left(x_{2} \leq a_{2}\right) \ldots\left(x_{N} \leq a_{N}\right)}}{n}\right]
$$

Where the notation $\left(x_{1} \leq a_{1}\right)\left(x_{2} \leq a_{2}\right) \ldots\left(x_{N} \leq \mathrm{a}_{\mathrm{N}}\right)$ is the intersection event consisting of the intersection of the events associated $x_{1} \leq a_{1}, x_{2} \leq a_{2}$, etc.
$x_{1} \leq a_{1}, x_{2} \leq a_{2}$, etc.
The N-dimensional PDF is $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\left.\frac{\partial^{N} F\left(a_{1}, a_{2}, \ldots, a_{N}\right)}{\partial a_{1} \partial a_{2} \ldots \partial a_{N}}\right|_{\mathrm{a}=\mathrm{x}}$ Where \mathbf{a} and \mathbf{x} are the row vectors, $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$, $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

■ The expected value of $\mathrm{y}=\mathrm{h}(\mathbf{x})$ is

$$
\overline{[y]}=\overline{h\left(x_{1}, x_{2}, \ldots, x_{N}\right)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{1}, x_{2}, \ldots, x_{N}\right) f\left(x_{1}, x_{2}, \ldots, x_{N}\right) d x_{1} d x_{2} \ldots d x_{N}
$$

Bi-variable Statistics

■ The correlation (or joint mean) of $x 1$ and $x 2$ is

$$
m_{12}=\overline{x_{1} x_{2}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

■ Two random variables $x 1$ and $x 2$ are said to be uncorrelated if

$$
m_{12}=\overline{x_{1} x_{2}}=\overline{x_{1} x_{2}}=m_{1} m_{2}
$$

■ Two random variables are said to orthogonal if $m_{12}=\overline{x_{1} x_{2}}=0$

- The covariance is

$$
u_{12}=\overline{\left(x_{1}-m_{1}\right)\left(x_{2}-m_{2}\right)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-m_{1}\right)\left(x_{2}-m_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

■ The correlation coefficient is

$$
\rho=\frac{u_{12}}{\sigma_{1} \sigma_{2}}=\frac{\overline{\left(x_{1}-m_{1}\right)\left(x_{2}-m_{2}\right)}}{\sqrt{\left(x_{1}-m_{1}\right)^{2}} \sqrt{\left(x_{2}-m_{2}\right)^{2}}}
$$

This is also called the normalized covariance. $-1 \leq \rho \leq+1$

Multi-Variable Functional Transformation

Let $\mathbf{y}=\mathbf{h}(\mathbf{x})$ denote the transfer characteristic of a device (no memory) that has
N inputs, denoted by $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$; N outputs, denoted by $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$; and $y_{i}=h_{i}(\mathbf{x})$. Furthermore, let $\mathbf{x}_{i}, i=1,2, \ldots, M$ denote the real roots (vector) of the equation $\mathbf{y}=\mathbf{h}(\mathbf{x})$.
The PDF of the outputs is then
$f_{\mathbf{y}}(\mathbf{y})=\left.\sum_{i=1}^{M} \frac{f_{\mathbf{x}}(\mathbf{x})}{|J(\mathbf{y} / \mathbf{x})|}\right|_{\mathrm{x}=\mathrm{x}_{\mathrm{i}}=\mathbf{h}_{i}^{-1}(\mathbf{y})}$
where $J(\mathbf{y} / \mathbf{x})$ is the Jacobian of the coordinat transformation to \mathbf{y} from \mathbf{x}
$J\left(\frac{\mathbf{y}}{\mathbf{x}}\right)=\operatorname{Det}\left[\begin{array}{cccc}\frac{\partial h_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{1}(\mathbf{x})}{\partial x_{2}} & \ldots & \frac{\partial h_{1}(\mathbf{x})}{\partial x_{N}} \\ \frac{\partial h_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{2}(\mathbf{x})}{\partial x_{2}} & \ldots & \frac{\partial h_{2}(\mathbf{x})}{\partial x_{N}} \\ \ldots & \ldots & \ldots & \ldots \\ \frac{\partial h_{N}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{N}(\mathbf{x})}{\partial x_{2}} & \ldots & \frac{\partial h_{N}(\mathbf{x})}{\partial x_{N}}\end{array}\right]$
where Det[.] denotes the determinant of the matrix

Characteristic Function

- The characteristic function is defined as

$$
M_{x}(v) \square E\left[e^{j v x}\right]=\int_{-\infty}^{\infty} e^{j v x} f_{x}(x) d x
$$

$\mathrm{Mx}(\mathrm{v})$ is the Fourier transform of $\mathrm{fx}(\mathrm{x})$, moment generating function

- For the nth moment,

$$
E\left[x^{n}\right]=\left.(-j)^{n} \frac{\partial^{n} M_{x}(v)}{\partial v^{n}}\right|_{v=0}
$$

- A pdf is obtained from the corresponding characteristic function by the inverse transform

$$
f_{x}(x)=\int_{-\infty}^{\infty} e^{-j v x} M_{x}(v) d x
$$

The sum of two independent RVs

■ $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
From the definition of the characteristic function of Z, we write

$$
\begin{aligned}
M_{Z}(v) & \square E\left[e^{j v z}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j v(x+y)} f_{x}(x) f_{y}(y) d x d y \\
& =\int_{-\infty}^{\infty} e^{j v x} f_{x}(x) d x \int_{-\infty}^{\infty} e^{j y y} f_{y}(y) d y=E\left[e^{j v X}\right] E\left[e^{j v Y}\right] \\
& =M_{X}(v) M_{Y}(v)
\end{aligned}
$$

The characteristic function is the Fourier transform of the corresponding PDF, and that a product in the frequency domain corresponds to convolution in the time domain, it follows that

$$
f_{z}(z)=f_{x}(x) * f_{y}(y)=\int_{-\infty}^{\infty} f_{x}(z-u) * f_{y}(u) d u
$$

Central Limit Theorem

■ If we have the sum of a number of independent random variables with arbitrary one-dimensional PDFs, the central limit theorem states that the PDF for the sum of these independent random variable approaches a Guassian (Normal) distribution under very general conditions.

- Example

$$
\begin{aligned}
& y_{1}=\sin \left(x_{1}\right) \\
& y_{2}=\sin \left(x_{1}\right)+\sin \left(x_{2}\right) \\
& y_{4}=\sin \left(x_{1}\right)+\sin \left(x_{2}\right)+\ldots+\sin \left(x_{4}\right) \\
& y_{8}=\sin \left(x_{1}\right)+\sin \left(x_{2}\right)+\ldots+\sin \left(x_{8}\right) \\
& y_{16}=\sin \left(x_{1}\right)+\sin \left(x_{2}\right)+\ldots+\sin \left(x_{16}\right)
\end{aligned}
$$

$x_{1}, x_{2}, \ldots, x_{16}$ are independent and uniformly distributed over 0 to 2π.

$\mathrm{N}=1$

$\mathrm{N}=2$

$N=4$

$N=8$

$\mathrm{N}=16$

Homework

■ B-3, B-18, B-36, B-39, B-48

