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Introduction

Practical Waveforms
Time Average Operators
Bandlimited Signals
Bandwidth
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Properties of Signals and Noise
In communication 
systems, the received 
waveform is usually 
categorized into the 
desired part containing 
the information and the 
extraneous or undesired 
part. The desired part is 
called the signal, and 
the undesired part is 
called noise.



Lecture 3 4

Analysis of Signal and Noise

The signal is referred to a deterministic 
waveform, modeled and analyzed by 
mathematical tool “Signals and Systems”.
The noise is referred to a random 
waveform, modeled and analyzed by 
mathematical tool “Random Processes”  
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Review of “Signals and Systems”
Fourier Transform and Spectra (LC 2-2)
Power Spectral Density and 
Autocorrelation Function (LC 2-3)
Orthogonal Series Representation (LC 2-
4)
Fourier Series (LC 2-5)
Linear Systems (LC 2-6)
Sampling Theorem (LC 2-7)
Discrete Fourier Transform (LC 2-8)
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Practical Waveforms
Practical waveforms that are physically realizable (i.e., 
measurable in a laboratory) satisfy several conditions:

The waveform has significant (nonzero) values over a 
composite time interval that is finite.
The spectrum of the waveform has significant values over a 
composite frequency interval that is finite.
The waveform is a continuous function of time.
The waveform has a finite peak value.
The waveform has only real values. That is, at any time, it 
cannot have a complex value a + jb, where b is nonzero.
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Mathematical Models
Mathematical models that violate some or all of the conditions 
listed above are often used, and for one main reason – to 
simplify the mathematical analysis.
The physical waveform is said to be an energy signal because it 
has finite energy, whereas the mathematical model is said to be a 
power signal because it has the property of finite power (and 
infinite energy).
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Time Average Operator
The time average operator is given by
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Linear Operator, the average of the sum of two quantities is equal 
to the sum of their averages

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )a w t a w t a w t a w t+ = +

[ ] [ ]dt
T

a

a

T

T
∫
+

+−

⋅>=⋅<
2

0

2
00

1

THEOREM: If the waveform involved is periodic with period T0, 
the time average operator can be reduced to
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where T0 is the smallest positive number that satisfies the relationship. 
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DC Value
The dc (“direct current”) value of a waveform w(t) is 
given by its time average, <w(t)>.

For any physical waveform, we are actually interested 
in evaluating the dc value only over a finite interval of 
interest, say, from t1 to t2, so that the dc value is
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Power
Let v(t) denote the voltage across a set of circuit terminals, and 
let i(t) denote the current into the terminal. The instantaneous 
power associated with the circuit is given by
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The average power is

The root-mean-square (rms) value of w(t) is

If the load is resistive, the average power is
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Power
The concept of normalized power is often used by communication 
engineers. In this concept, R is assumed to be 1 Ω, although it 
may be another value in the actual circuit. The average 
normalized power is
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w(t) is a power waveform if and only if the normalized average 
power P is finite and nonzero. (0 < P < ∞)
The total normalized energy is

w(t) is an energy waveform if and only if the total normalized 
energy E is finite and nonzero. (0 < E < ∞)



Lecture 3 12

Power

Physically realizable waveforms are of the energy type.
Basically, mathematical models are of the power type.
Mathematical functions can be found that have both infinite 
energy and infinite power, e.g., w(t) = e -t.



Lecture 3 13

Decibel

The decibel gain of a circuit is

The decibel power level with respect to 1 milliwatt is
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The decibel signal-to-noise ratio is
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Bandlimited Signal
A waveform w(t) is said to be (absolutely) bandlimited to B hertz 
if

BffW ≥= for,0)(

Tttw >= for ,0)(

A waveform w(t) is said to be (absolutely) time limited if

An absolutely bandlimited waveform cannot be absolutely time 
limited, and vice versa. This raises an engineering paradox. This 
paradox is resolved by realizing that we are modeling a physical 
process with a mathematical model and perhaps the assumption 
in the model are not satisfied – although we believe them to be 
satisfied.
If a waveform is absolutely bandlimited, it is analytic function.

On Bandwidth, D. Slepian, Proceedings of IEEE,  vol. 64, no. 3, 1976
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Bandwidth
What is bandwidth? There are numerous definitions of the term.
In engineering definitions, the bandwidth is taken to be the width of a 
positive frequency band. In other words, the bandwidth would be f2 – f1, 
where f2 ≥  f1 ≥ 0 and is determined by the particular definition that is 
used.
ABSOLUTE BANDWIDTH is f2 – f1 , where the spectrum is zero outside 
the interval f1 < f < f2 along the positive frequency axis.
3-dB BANDWIDTH (or HALF-POWER BANDWIDTH) is f2 – f1 , where for 
frequencies inside the band f1 < f < f2, the magnitude spectra, say, 
|H(f)|, falls no lower than 1/     times the maximum value of |H(f)| , and 
the maximum value occurs at a frequency inside the band.
EQUIVALENT NOISE BANDWIDTH is the width of a fictitious rectangular 
spectrum such that the power in that rectangular band is equal to the 
power associated with the actual spectrum over positive frequencies. Let 
f0 be the frequency at which the magnitude spectrum has a maximum, 
then
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Bandwidth
NULL-TO-NULL BANDWIDTH (or ZERO-CROSSING BANDWIDTH) is f2 –
f1 , where f2 is the first null in the envelope of the magnitude spectrum 
above f0 and , for bandpass systems,  f1 is the first null in the envelope 
below f0, where f0 is the frequency where the magnitude spectrum is a 
maximum. For baseband systems f1 is usually zero.
BOUNDED SPECTRUM  BANDWIDTH is f2 – f1 such that outside the band 
f1 < f < f2, the PSD must be down at least a certain amount, say, 50dB, 
below the maximum value of the PSD.
POWER BANDWIDTH is f2 – f1, where f1 < f < f2 defines the frequency 
band in which 99% of the total power resides. 
FCC BANWIDTH is an authorized bandwidth parameter assigned by the 
FCC to specify the spectrum allowed in communication systems. For 
operating frequencies below 15 GHz, in any 4kHz band, the center 
frequency of which is removed from the assigned frequency by P% (50 
< P < 250) of the authorized bandwidth (B, in MHz), the attenuation 
below the mean output power level is given by the following equation:

(dB)log10)50(8.035 BPA +−+=
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Example
BANDWIDTH FOR A BPSK SIGNAL ttmts cωcos)()( =
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Example
The worst-case (widest-bandwidth) spectrum occurs when the 
digital modulating waveform has transitions that occur most often. 
In this case, m(t) would be a square wave.

∑∑

∫

∑

∞

≠
−∞=

∞

≠
−∞=

−

∞

−∞=

−=−=

⎪⎩

⎪
⎨
⎧

=⋅⋅

=
=

−=

0

2

0

0
2

00

2/

2/
0

0
2

)
2

()2/()()2/()(

)2/()(2

0)(1

)()(

0

0

n
n

n
n

m

bb

T

Tn

n
nm

RnfnSanffnSafP

nSaTnfSaTf

dttm
Tc

nffcfP

δπδπ

ππ

δ



Lecture 3 19

Example
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The PSD of s(t) is obtained by taking Fourier transform of both 
sides
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Example
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Example
To evaluate the bandwidth for the BPSK signal, the shape of the 
PSD for the positive frequencies is needed, it is
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Absolute Bandwidth

∞=−∞=−= 012 ffBabs
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3-dB Bandwidth
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Equivalent Noise Bandwidth
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Null-to-Null Bandwidth
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Bounded spectrum bandwidth (50dB)
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Power bandwidth (20dB)
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FCC bandwidth
In this example, the FCC bandwidth parameter B = 30 MHz. 
Assume that the PSD is constant across the 4-kHz bandwidth (4 
kHz / 30 MHz = 0.013%), the decibel attenuation of the BPSK 
signal
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FCC Bandwidth
FCC envelope A for B = 30 MHz
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FCC Bandwidth
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Homework
2-4, 2-10, 2-32, 2-45, 2-92
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