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Properties of Signals and Noise

B In communication
systems, the received
waveform is usually
categorized into the
desired part containing
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Figure 6-17 Integrate-and-dump realization of a matched filter.



Analysis of Signal and Noise

B The signal is referred to a deterministic
waveform, modeled and analyzed by
mathematical tool “Signals and Systems”.

B The noise is referred to a random
waveform, modeled and analyzed by
mathematical tool "Random Processes”
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Review of "Signals and Systems”

B Fourier Transform and Spectra (LC 2-2)

B Power Spectral Density and
Autocorrelation Function (LC 2-3)

B Orthogonal Series Representation (LC 2-
4)

B Fourier Series (LC 2-5)

M Linear Systems (LC 2-6)

B Sampling Theorem (LC 2-7)

W Discrete Fourier Transform (LC 2-8)
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Practical Waveforms

il
u that are physically realizable (i.e.,

measurable in a laboratory) satisfy several conditions:

B The waveform has significant (nonzero) values over a
composite time interval that is finite.

B The spectrum of the waveform has significant values over a
composite frequency interval that is finite.

B The waveform is a continuous function of time.
B The waveform has a finite peak value.

B The waveform has only real values. That is, at any time, it
cannot have a complex value a + jb, where b is nonzero.
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Mathematical Models

N
u that violate some or all of the conditions
listed above are often used, and for one main reason — to
simplify the mathematical analysis.

B The physical waveform is said to be an because it
has finite energy, whereas the mathematical model is said to be a
because it has the property of finite power (and
infinite energy).

w(t)

Waveform decays Waveform decays

to zero before to mm before
t=-00 t=

(a) Physical Waveform
w(t)

Waveform extends Waveform extends
I = =00, tot = +oo

] 1
r r r 4T 5T 6T r

— —

(b) Math Model Waveform
Figure 2-1 Physical and mathematical waveforms.
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Time Average Operator

B The iS given by
1 Y
<[]>=lim= ([]dt
T > T _T/
u , the average of the sum of two quantities is equal

to the sum of their averages
(aw, (1) +a,w, (1)) = &, (w, (1)) + &, (w, (1))

B A waveform w(t) is with period TO if
w(t)=w(t+T,) forallt
where TO is the smallest positive humber that satisfies the relationship.

u : If the waveform involved is periodic with period TO,
the time average operator can be reduced to

1 0/ +a
<Ho-2 Jila
0 -To/+a
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DC Value

B The of a waveform w(t) is
given by its time average, <W{t)>

W, = (w(t)) = lim = jw(t)dt

T—>oo

B For any physical waveform, we are actually interested
in evaluating the dc value only over a finite interval of
interest, say, from tl to t2, so that the dc value is

W, j w(t) dt

1t,

Ct—t
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Power

i
B Let v(¢) denote the voltage across a set of circuit terminals, and
let i(£) denote the current into the terminal. The
associated with the circuit is given by

p(t) =v(D)I(t)

B The average power is
P=<p(t) >=<v()Ii(t) >
B The of w(t)is
W =.J<W(t) >
B If the load is resistive, the average power is

V2
=<i’()>R="m =17, R=V,,|

5 _ <VA(t) >

rms rms = rms
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Power

W
The concept of is often used by communication
engineers. In this concept, Ris assumed to be 1 2, although it
may be another value in the actual circuit. The
IS

P=<w(t) >

w(t)is a if and only if the normalized average
power Pis finite and nonzero. (0 < P < x)

The total normalized energy is
Y
E = lim jWZ(t)dt

T —o0

2

w(t)is an if and only if the total normalized
energy £is finite and nonzero. (0 < £< )
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Power

B Physically realizable waveforms are of the energy type.
B Basically, mathematical models are of the power type.

B Mathematical functions can be found that have both infinite
energy and infinite power, e.q.,, W(t) = e .
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Decibel

B The of a circuit is
dB =10 Iog(IDOUt ]
P
B The iS
P, <s*(t) >
S =10log—2 — 1010
(/D =10l0g Pis CTHOE
—101 Vr?ns signal 201 Vrms signal
=1U100— = 0g |
B The with respect to 1 milliwatt is
dBm =10log— WA)__ 35 10109 " WAMS) _ 55, qBw
107 (watts) 1(watts)
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Bandlimited Signal

A waveform w(t)is said to be (absolutely) bandlimited to B hertz
if
W(f)=0, for|f|>B

A waveform w(t)is said to be (absolutely) time limited if

w(t)=0, forlt|>T

An absolutely bandlimited waveform cannot be absolutely time
limited, and vice versa. This raises an engineering paradox. This
paradox is resolved by realizing that we are modeling a physical
process with a mathematical model and perhaps the assumption
in the model are not satisfied — although we believe them to be
satisfied.

If a waveform is absolutely bandlimited, it is analytic function.

On Bandwidth, D. Slepian, Proceedings of IEEE, vol. 64, no. 3, 1976
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Bandwidth

What is bandwidth? There are numerous definitions of the term.

In engineering definitions, the bandwidth is taken to be the width of a
positive frequency band. In other words, the bandwidth would be £ — £,
where £, 2 £ = 0 and is determined by the particular definition that is
used.

is £, — 1, , where the spectrum is zero outside
the interval £ < 7< £ along the positive frequency axis.

(or ) is , — 1, , where for
frequencies inside the band £ < F< £, the magnitude spectra, say,
| ()|, falls no lower than 14/2 times the maximum value of |H(f)| , and
the maximum value occurs at a frequency inside the band.

is the width of a fictitious rectangular
spectrum such that the power in that rectangular band is equal to the
power associated with the actual spectrum over positive frequencies. Let
f, be the frequency at which the magnitude spectrum has a maximum,

then » 1 o
B,o[H(fo)" = [ [H(F)[ df = B, =———[ |H(f)[df
H(fo)
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Bandwidth

(or )is £, —
f, , where £ is the first null in the envelope of the magnitude spectrum
above fy and , for bandpass systems, £ is the first null in the envelope
below 7, where f£; is the frequency where the magnitude spectrum is a
maximum. For baseband systems £ is usually zero.

is £, — 7, such that outside the band
fi < < £, the PSD must be down at least a certain amount, say, 50dB,
below the maximum value of the PSD.

is £, — f;, where £, < f< £ defines the frequency
band in which 99% of the total power resides.

is an authorized bandwidth parameter assigned by the
FCC to specify the spectrum allowed in communication systems. For
operating frequencies below 15 GHz, in any 4kHz band, the center
frequency of which is removed from the assigned frequency by Ao (50
< P < 250) of the authorized bandwidth (B, in MHz), the attenuation
below the mean output power level is given by the following equation:

A=35+0.8(P-50)+10logB (dB)
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Example

BB
B BANDWIDTH FOR A BPSK SIGNAL s(t) =m(t) cos ot

BINARY DATA
1 0 1 0 I 0
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Example

T
B The worst-case (widest-bandwidth) spectrum occurs when the
digital modulating waveform has transitions that occur most often.
In this case, m(t) would be a square wave.

P.(f)= Yle,[5(f —nf,)

1 ¢70/2
= j_Tolzm(t)dt =0
f,-2-T,Sa(znf,T,) = Sa(zn/2)

P.(f)= Y sa?(m/2)s(f -nfy) = Y sa(m/2)5(f —ng)

N=—o0
n=0 n=0
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Example

i .
B The autocorrelation of s(t).

R, (7) =<s(t)s(t+7) >=<m(t)cosam,t-m(t+z)cosw, (t +7) >
=<m(t)m(t +7)-3[cos w7 +cos(2wt + w,7)] >

=2 <m(t)m(t+7)cosw,r > +3 <m(t)m(t+7)cos(2a.t + w.7) >
=2<m(t)m(t+7)>cosa,.r

=2R, (r)cosam,r

B The PSD of s(t) is obtained by taking Fourier transform of both
sides
P.(f)=F[R,(r)]=F[5R,(r)cosa.r]=¢[P,(f = f.)+ P, (f + f.)]

=1 Sa’(zn/2)[s(f - f, —ng)+5(f + fc—ng)]
ns0

Lecture 3
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Example

m(t)
1.0
T
[ —
-10f
(a) Digital Modulating Waveform
!A\ @(f) JA\
1\ [
] 1 ] 1
] 1 I ]
] 1 ] 1
1 I \
[ I \
/ \ I A
i P I V2 YR P et e NP2 B 2N ==
-f. - 2R l ~f. | ~ft2R f.-2R ‘ £ f. +2R
f:-R  -f.+R L~k - fam T
(b) Resulting BPSK Spectrum
Figure 2-23 Spectrum of a BPSK signal.
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Example

T
B To evaluate the bandwidth for the BPSK signal, the shape of the
PSD for the positive frequencies is needed, it is

P(f)=+ i Sa’[#T, (f — f)]o(f - fc—ng)

n=N

P(f) ~
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Absolute Bandwidth

Babs: .I:Z_fl:oo_o:OO

P(f) ~

Lecture 3
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3-dB Bandwidth

Sa’[#T,(f,— f.)=1=#T,(f,- f)~14=

f,—f. = 14 ~ 0.446 =0446R=B,, =f,— f,=2(f, - f,)=0.891R
T, T,

N |~
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Equivalent Noise Bandwidth

e
jSa [T, (f — f)]df~2j Sa?[T, (f — f.)]df =2— jSa xdx =

Sa’[T, (

I, =12 By = [ H(E) df = ——1.00R

) \H(f)\

P(f)

T _R
2
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Null-to-Null Bandwidth

Sa?[AT, (f — f.)]=0= AT, (f — f.) =47
= f, = fc+%b: f +R, f = fc—%bz f ~R=B,, =2R=2.00R

P(f) ~
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Bounded spectrum bandwidth (50dB)

10log Sa?[~T. (f — f)]<10lo
g Sa“[#T,( o) g[;sz(f

50

[T, (f - f,)]? 210 =10° = f — f_>

P(f)

1
o fc)]2

=-10log[T, (f - f.)]* <-50

V10°

7l

~100.6584R = B, = 2x100.6584R ~ 201.32R

[ A IV C T I e
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Let X =T, f
jox° Sa2(x)dx

_[OOO Sa”(x)dx

Power bandwidth (20dB)

1

=0.99 = X, ~32.29 = f, =—x, ~10.278R = B
T

P(f)

)
i
99% of the total area 1’

f.—R

Lecture 3
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FCC bandwidth

B In this example, the FCC bandwidth parameter £ = 30 MHz,
Assume that the PSD is constant across the 4-kHz bandwidth (4
kHz / 30 MHz = 0.013%), the decibel attenuation of the BPSK
signal

 2000P(1)

A(f) :—1OIogR‘L“)=—1O 0
B.,P(f,)

total
Plugging in B, = R Hz, Af) = 1 Watt/Hz, we have

A(f) = —1OI09&F?OSa2[7sz(f — )]

The envelope of A(f)

An(f)=-1010g20%0 1 _ _4gjoq_A000R _
R [#T,(f = 1.)] [7(f - f.)]
— ~10log—00R 7 =—10log 0R — z83.46—10|ogﬁ2
[7(P%B)] [7(P%x30x10°)] P

Lecture 3
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FCC Bandwidth

B FCC envelope Afor 8= 30 MHz

A=35+0.8(P-50)+10log B

—35+0.8(P —50) +101log 30 ~ 49.77 + 0.8(P —50)

80—-49.77

A=80dB = P=5O+Tz87.79

P=87.79= A, (f)=83.46-10l0g

R

2

87.79

122.33-80

~122.33-10logR>80 = R<10

Lecture 3
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FCC Bandwidth

e
A(f)
X Pas (f)
30 Mz A(f)=-10 Iogm(%)
30

\ FCC envelope for B = 30 MHz
[Equation (2-193)]

1 ‘ Quasi-bandlimited MS!C signaling
* . for R = 25 Mbit/s
B ' \ [Amoroso, 1980]

BPSK envelope for

~ R = 00171 Mbits/s «  \
[Equation (2—206)] \
| | 1 ‘ |
~s0 —40 -30 20 -10 0 10 20 30 40 50
Af=f-f. (MHz)

Figure 2-24 FCC-allowed envelope for B = 30 MHz.
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Homework

-
m 2-4, 2-10, 2-32, 2-45, 2-92
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