Course Summary

Lecture 26, 2009-1-4

Communication System

- A communication system is designed to transmit information.
- We have four concerns:
 - Selection of the information-bearing waveform
 - Bandwidth and power of the waveform
 - Effect of system noise on the received information
 - Cost of the system

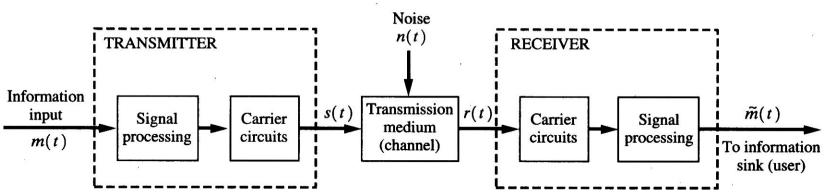
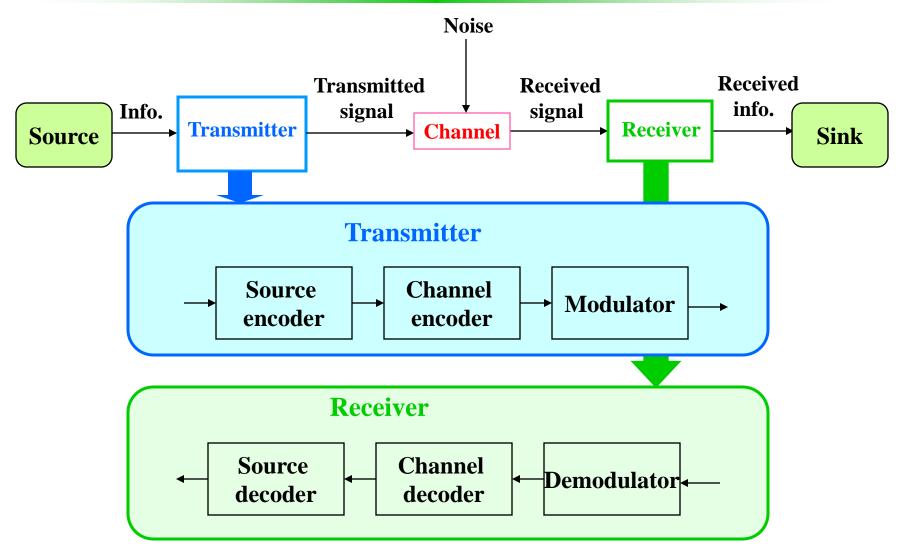



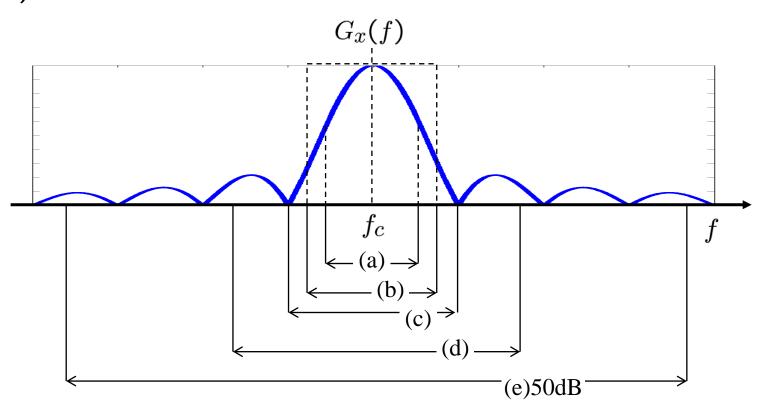
Figure 1-1 Communication system.

Communication System

- Analog and Digital Information
- Deterministic and Random Waveform
- Baseband and Bandpass
- Modulation

Digital Communication System

Digital Communication System


- Source Coding vs. Channel Coding
- Information, Entropy
- Channel Capacity

Bandwidth

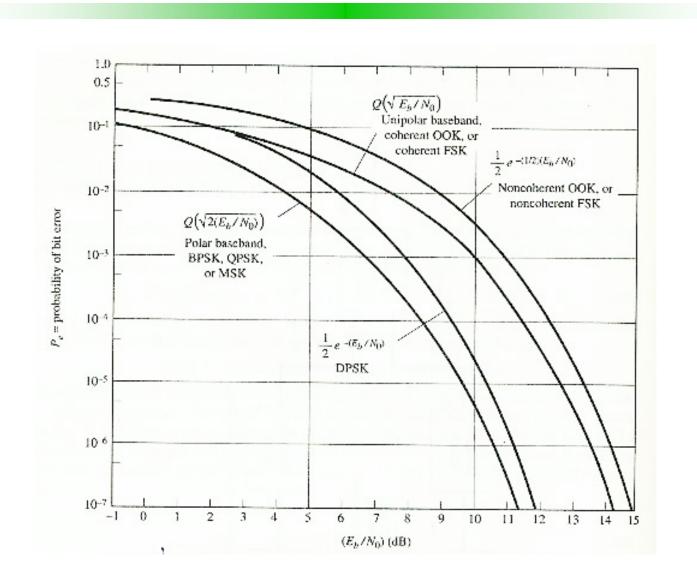
Different Definitions

- a) 3-dB bandwidth
- b) Equivalent noise bandwidth
- c) Null-to-null bandwidth

- d) Power bandwidth
 - Bounded spectrum bandwidth
 - Absolute bandwidth

e)

Baseband Digital System


- Sampling Theorem
- PAM, natural and instantaneous sampling
- Sampling, quantizing, and encoding
- Digital signal representation
- Line codes and their spectra
- Inter-symbol interference, equalizing filter and Nyquist's method
- DPCM and DM
- Eye pattern
- Matched filter
- Gaussian noise and baseband performance

Bandpass Digital System

- BPSK
- DPSK
- FSK
- MASK
- MPSK, QPSK
- QAM
- OQPSK
- MSK

- Constellation
- Required Bandwidth
- Coherent Detection
- Noncoherent Dectection
- OFDM
- Spread Spectrum

BER Comparison

Comparison of Digital Signaling Methods

	Minimum Dominod Dondersidth	Error Performance	
	Minimum Required Bandwidth	Coherent Detection	Noncoherent Detection
OOK	2R	$\mathcal{Q}\!\!\left[\sqrt{\!\left(rac{E_b}{N_0} ight)} ight]$	$\frac{1}{2}e^{-(1/2)(E_b/N_0)}$
BPSK	2R	$\mathcal{Q}\!\!\left[\sqrt{\!2\!\left(rac{E_b}{N_0} ight)} ight]$	Requires coherent detection
FSK	2(∆F+R)	$\mathcal{Q}\!\left[\sqrt{\!\left(rac{E_b}{N_0} ight)} ight]$	$\frac{1}{2}e^{-(1/2)(E_b/N_0)}$
DPSK	2R	Not used in practice	$\frac{1}{2}e^{-(E_b/N_0)}$
QPSK	R	$\mathcal{Q}\!\!\left[\sqrt{\!2\!\left(\frac{E_b}{N_0}\right)}\right]$	Requires coherent detection
MSK	1.5R	$\mathcal{Q}\!\!\left[\sqrt{2\!\left(rac{E_b}{N_0} ight)} ight]$	$\frac{1}{2}e^{-(1/2)(E_b/N_0)}$

About the Examination

- Time: 1:10-3:10 PM, Jan. 14, 2009
- Venue: XiaYuan 406
- Close book
- You are allowed to bring one page of A4 paper with necessary formula and one calculator.
- Show all intermediate steps. No credit will be given for final results only.
- All the answers must be written in English.

Principles of Communication

Thank you! All the best wishes! Good luck in future! Good luck in the exam!