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Basic Concepts

 Example
 At the end of this class, I make one of the following statements 

to the class:
A. I will see you next period
B. Due to some reasons, I will miss next lecture.
C. Everyone gets an A in the course, and there will be no more 
homework and projects.

 What is the relative information conveyed to you?
There is little information conveyed by statement A, since we have a 
schedule. That is, the probability, P(A) is nearly 1.
Intuitively, we know that statement B contains more information, and 
the probability that I miss one lecture P(B) is relatively low.
Statement C contains a vast amount of information for the entire class, 
and such a statement has a very low probability of occurrence.

 Information is defined consistent with this intuitive example.

 The purpose of communication systems is to transmit information 
from a source to receiver. However, what exactly is information, 
and how do we measure it?
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Information
 Definition. The information sent from a digital source when the 

jth message is transmitted is given by

2
1log  bitsj

j

I
P

 
=   

 
Where Pj is the probability of transmitting the jth message.

 From this definition, we see that messages that are less likely to 
occur (smaller value for pj) provide more information (larger 
value of Ij). The information does not depend on possible 
interpretation of the content as to whether or not it makes sense.

 The base of the logarithm determines the units used for the 
information measure. Thus, for units of “bits”, the base 2 
logarithm is used. If the natural logarithm is used, the units are 
“nats” and for base 10 logarithms, the unit is the “hartley”, 
named after R. V. Hartley, who first suggest using the logarithm 
measure in 1928.
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Example
 Consider a random experiment with 16 equally likely outcomes. 

The information associate with each outcome is

2 2
1log = log 16 4  bits

1/16jI  = = 
 

Where j ranges from 1 to 16. 
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Average Information
 Definition. The average information measure of a digital source is

2
1 1

1log  bits
m m

j j j
j j j

H P I P
P= =

 
= =   

 
∑ ∑

Where m is the number of possible different source message and 
Pj is the probability of transmitting the jth message. The average 
information is also called entropy.

 Originally, the concept of entropy was introduced in 
Thermodynamics, which is an important branch of physics.  
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Energy vs. Information
 Energy can exist in one region of space or another, can flow from 

here to there, can be stored for later use, and can be converted 
from one form to another.

 In the context of thermodynamics, the conversation of energy 
principle is known as the First law.

 Like energy, information can reside in one place or another, it 
can be transmitted through space, and it can be stored for later 
use.

 But unlike energy, information is inherently subjective because it 
deals with what you know and what you don’t know. 

 Also, information is not conserved as is energy. The second law 
states that entropy never decrease as time goes on.
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Entropy of a Binary Source

2 2log (1 ) log (1 )H p p p p= − − − −
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Source Rate
 Definition. The source rate is given by

  bits/sHR
T

=

Where H is average information and T is the time required to 
send a message.  
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Example
 A source with bandwidth 4000 Hz is sampled at the Nyquist rate. 

Assuming that the resulting sequence can be approximately 
modeled by a discrete memoryless source with alphabet A={-2, -
1, 0, 1, 2} and with corresponding probablities {1/2, ¼, 1/8, 
1/16, 1/16}, determine the source rate

2 2 2 2 2

Entropy
1 1 1 1 1log 2 log 4 log 8 log 16 log 16
2 4 8 16 16
1 2 3 4 4 15  bits/sample
2 4 8 16 16 8

Sample rate
2 4000 8000 samples/sec

Source rate
15 8000 15000  bits/sec
8

H

S

R H S

= + + + +

= + + + + =

= × =

= ⋅ = × =
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Discrete Channel Models
 If the values that the input and output variables can take finite, 

or countably infinite, the channel is called a discrete channel.
 In general, the output yi does not only depend on the input at 

the same time xi but also on the previous inputs (inter-symbol 
interference).

 Memoryless channel is defined that the channel output at a given 
time is a function of the channel input at that time and is not a 
function of previous channel inputs.

 For memoryless discrete channel, the conditional probability 
pij=p(yj|xi) of obtaining output yj given that the input is xi is 
called a channel transition probability.
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Transition Probabilities Matrix
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=

=
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Joint Entropy
 Definition. The joint entropy of two discrete random variables 

(X, Y) is defined by

2
,

( , ) ( , ) lo g ( , )
x y

H X Y p x y p x y= −∑

For the case of n random variables

1 2

1 2

1 2 2 1 2
, ,...,

( , ,..., )
( ) ( , ,..., ) log ( , ,..., )

n

n

n n
x x x

X X X
H p x x x p x x x
=

= − ∑
X

X
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Conditional Entropy
 Definition. The conditional entropy of the random variables X 

given the random variable Y is defined by

2
,

( | ) ( , ) log ( | )
x y

H X Y p x y p x y= −∑

[ ]

2
,

2
,

2 2
, ,

2 2
,

( , ) ( , ) lo g ( , )

( , ) log ( ) ( | )

( , ) log ( ) ( , ) log ( | )

( ) log ( ) ( , ) log ( | )

( ) ( | )

x y

x y

x y x y

y x y

H X Y p x y p x y

p x y p y p x y

p x y p y p x y p x y

p y p y p x y p x y

H Y H X Y

= −

= −

= − −

= − −

= +

∑

∑

∑ ∑

∑ ∑

 Theorem H(X,Y)=H(Y)+H(X|Y)
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Mutual Information
 Definition. The mutual information between two discrete 

random variables X and Y is denoted by I(X;Y) and defined by

( ; ) ( ) ( | )I X Y H X H X Y= −

H(X)

H(X|Y)

I(X;Y)
H(Y)

H(Y|X)

Entropy, conditional entropy, and mutual information
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Example

 Let X and Y be binary random variables with P(x=0,y=0)=1/3, 
P(x=1,y=0)=1/3, P(x=0,y=1)=1/3, Find I(X;Y) 

2 2 2

2 2 2 2

( 0 ) ( 0, 0 )( 0, 1) 2 / 3,      
( 0 ) 2 / 3,   ( 1) 1/ 3,   ( 1) 1/ 3

2 2 1 1 2( ) log log log 3 0.919
3 3 3 3 3

( ) 0.919
1 1 1 1 1 1( , ) log log log log 3 1.585
3 3 3 3 3 3

( | ) ( , ) ( ) 0.666
( ; )

P x P x y P x y
P y P x P y

H X

H Y

H X Y

H X Y H X Y H Y
I X Y

= = = = + = = =
= = = = = =

= − − = − + =

=

= − − − = =

= − =
= ( ) ( | ) 0.253H X H X Y− =
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Channel Capacity
 Is it possible to invent a system with no bit error at the output 

even when we have noise introduced into the channel?
 Shannon noisy channel-coding theorem. Reliable 

transmission without bit error is possible even over noisy channel 
as long as the transmission rate is less than channel capacity
C=max[I(X;Y)].

 The maximum is with respect to the source probabilities are fixed 
by the channel.
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Example
 Binary symmetric channel

P(x1)=α y1

y2

1-ε

ε

ε

1-ε
P(x2)=1-α

2 2

2
1 1

2 2

2 2

2 2

2 2

( ; ) ( ) ( | )

( | ) ( , ) log ( | )

(1 ) log (1 ) log
(1 )(1 ) log (1 ) (1 ) log

(1 ) log (1 ) log
Thus

( ; ) ( ) (1 ) log (1 ) log
which is maximum when H(Y) 

i j j i
i j

I X Y H Y H Y X

H Y X p x y p y x

I X Y H Y

α ε ε αε ε
α ε ε α ε ε
ε ε ε ε

ε ε ε ε

= =

= −

= −

= − − − −
− − − − − −
= − − − −

= + − − +

∑∑

2 2

is maximum. 
[ ( )] 1

[ ( ; )] 1 (1 ) log (1 ) log
Max H Y
C Max I X Y ε ε ε ε

=
= = + − − +
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Gaussian Channel Capacity
 Shannon showed that (for the case of signal plus white Gaussian 

noise) a channel capacity C (bits/s) could be calculated such that 
if the rate of information R (bits/s) was less than C, the 
probability of error would approach zero. The equation for C is

sbits
N
SBC /)1(log2 +=

where B is the channel bandwidth in Hz, and S/N is the signal-
to-noise power ratio (watts/watts, not dB) at the input to the 
digital receiver. Systems approach this bound usually incorporate 
error-correction coding.



Example

B=3000Hz, SNR=39dB
39dB=7943
C=3000log2(1+7943)=38.867 bps

20
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Homework
 LC 1-6, 1-7, 1-9, 1-14
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